cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A000252 Number of invertible 2 X 2 matrices mod n.

Original entry on oeis.org

1, 6, 48, 96, 480, 288, 2016, 1536, 3888, 2880, 13200, 4608, 26208, 12096, 23040, 24576, 78336, 23328, 123120, 46080, 96768, 79200, 267168, 73728, 300000, 157248, 314928, 193536, 682080, 138240, 892800, 393216, 633600, 470016, 967680, 373248, 1822176, 738720
Offset: 1

Views

Author

Keywords

Comments

For a prime p, a(p) = (p^2 - 1)*(p^2 - p) (this is the order of GL(2,p)). More generally a(n) is multiplicative: if the canonical factorization of n is the Product_{i=1..k} (p_i)^(e_i), then a(n) = Product_{i=1..k} (((p_i)^(2*e_i) - (p_i)^(2*e_i - 2)) * ((p_i)^(2*e_i) - (p_i)^(2*e_i - 1))). - Brian Wallace (wallacebrianedward(AT)yahoo.co.uk), Apr 05 2001, Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 18 2001
a(n) is the order of the automorphism group of the group C_n X C_n, where C_n is the cyclic group of order n. - Laszlo Toth, Dec 06 2011
Order of the group GL(2,Z_n). For n > 2, a(n) is divisible by 48. - Jianing Song, Jul 08 2018

Crossrefs

The order of GL_2(K) for a finite field K is in sequence A059238.
Row n=2 of A316622.
Row sums of A316566.
Cf. A064767 (GL(3,Z_n)), A305186 (GL(4,Z_n)).
Cf. A000056 (SL(2,Z_n)), A011785 (SL(3,Z_n)), A011786 (SL(4,Z_n)).
Cf. A227499.

Programs

  • Mathematica
    Table[n*EulerPhi[n]*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}], {n, 21}] (* Jean-François Alcover, Apr 04 2011, after Vladeta Jovovic *)
  • PARI
    a(n)=my(f=factor(n)[,1]); n^4*prod(i=1,#f, (1-1/f[i]^2)*(1-1/f[i])) \\ Charles R Greathouse IV, Feb 06 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A000252(n): return prod(p**((e<<2)-3)*(p*(p*(p-1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

a(n) = n^4*Product_{primes p dividing n} (1 - 1/p^2)*(1 - 1/p) = n^4*Product_{primes p dividing n} p^(-3)*(p^2 - 1)*(p - 1). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 18 2001
Multiplicative with a(p^e) = (p - 1)^2*(p + 1)*p^(4e-3). - David W. Wilson, Aug 01 2001
a(n) = A000056(n)*phi(n), where phi is Euler totient function (cf. A000010). - Vladeta Jovovic, Oct 30 2001
Dirichlet g.f.: zeta(s - 4)*Product_{p prime} (1 - p^(1 - s)*(p^2 + p - 1)). - Álvar Ibeas, Nov 28 2017
a(n) = A227499(n) for odd n; (3/4)*A227499(n) for even n. - Jianing Song, Jul 08 2018
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = A330523 = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085... - Vaclav Kotesovec, Aug 20 2021
Sum_{n>=1} 1/a(n) = (Pi^8/3240) * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^5 + 2/p^6 - 1/p^8) = 1.2059016071... . - Amiram Eldar, Dec 03 2022

Extensions

More terms from David W. Wilson, Jul 21 2001

A079458 Number of Gaussian integers in a reduced system modulo n.

Original entry on oeis.org

1, 2, 8, 8, 16, 16, 48, 32, 72, 32, 120, 64, 144, 96, 128, 128, 256, 144, 360, 128, 384, 240, 528, 256, 400, 288, 648, 384, 784, 256, 960, 512, 960, 512, 768, 576, 1296, 720, 1152, 512, 1600, 768, 1848, 960, 1152, 1056, 2208, 1024, 2352, 800, 2048, 1152, 2704
Offset: 1

Views

Author

Vladeta Jovovic, Jan 14 2003

Keywords

Comments

Number of units in the ring consisting of the Gaussian integers modulo n. - Jason Kimberley, Dec 07 2015

Examples

			{1, i, 1+2i, 2+i, 3, 3i, 3+2i, 2+3i} is the set of eight units in the Gaussian integers modulo 4. - _Jason Kimberley_, Dec 07 2015
		

Crossrefs

Equals four times A218147. - Jason Kimberley, Nov 14 2015
Sequences giving the number of solutions to the equation GCD(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), this sequence ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319445.

Programs

  • Magma
    A079458 := func)>; // Jason Kimberley, Nov 14 2015
    
  • Maple
    with(GaussInt): seq(GIphi(n), n=1..100);
  • Mathematica
    phi[1]=1;phi[p_, s_] := Which[Mod[p, 4] == 3, p^(2 s - 2) (p^2 - 1), Mod[p, 4] == 1, p^(2 s - 2) ((p - 1))^2, True, 2^(2 s - 1)];phi[n_] := Product[phi[FactorInteger[n][[i, 1]], FactorInteger[n][[i, 2]]], {i, Length[FactorInteger[n]]}];Table[phi[n], {n, 1, 33}] (* José María Grau Ribas, Mar 16 2014 *)
    f[p_, e_] := (p - 1)*p^(2*e - 1) * If[p == 2, 1, 1 - (-1)^((p-1)/2)/p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 13 2024 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2, r*=2^(2*e-1));
            if(p%4==1, r*=(p-1)^2*p^(2*e-2));
            if(p%4==3, r*=(p^2-1)*p^(2*e-2));
        );
        return(r);
    } \\ Jianing Song, Sep 16 2018

Formula

Multiplicative with a(2^e) = 2^(2*e-1), a(p^e) = (p^2-1)*p^(2*e-2) if p mod 4=3 and a(p^e) = (p-1)^2*p^(2*e-2) if p mod 4=1.
a(n) = A003557(n)^2 * a(A007947(n)), where a(2)=2, a(p)=(p-1)^2 for prime p=1(mod 4), a(p)=p^2-1 for prime p=3(mod 4), and a(n*m)=a(n)*a(m) for n coprime to m. - Jason Kimberley, Nov 16 2015
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-2) * (1 - 1/2^(s-1)) * Product_{p prime > 2} (1 - 1/p^(s-1) - (-1)^((p-1)/2)*(p-1)/p^s).
Sum_{k=1..n} a(k) = c * n^3 / 3 + O(n^2 * log(n)), where c = (3/4) * Product_{p prime > 2} (1 - 1/p^2 - (-1)^((p-1)/2)*(p-1)/p^3) = (3/4) * A334427 * Product_{p prime == 1 (mod 4)} (1 - 2/p^2 + 1/p^3) = 0.6498027559... (Calderón et al., 2015). (End)
a(n) = A204617(n)*A062570(n). - Ridouane Oudra, Jun 05 2024

A238533 Number of solutions to gcd(x^2 + y^2 + z^2 + t^2 + h^2, n) = 1 with x,y,z,t,h in [0,n-1].

Original entry on oeis.org

1, 16, 162, 512, 2500, 2592, 14406, 16384, 39366, 40000, 146410, 82944, 342732, 230496, 405000, 524288, 1336336, 629856, 2345778, 1280000, 2333772, 2342560, 6156502, 2654208, 7812500, 5483712, 9565938, 7375872, 19803868, 6480000, 27705630, 16777216, 23718420
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. n^k * a(n): A000010 (k=-4), A002618 (k=-3), A053191 (k=-2), A189393 (k=-1), A239442 (k=2), A239443 (k=4).

Programs

  • Mathematica
    g[n_, 5] := g[n, 5] = Sum[If[GCD[x^2 + y^2 + z^2 + t^2 + h^2, n] == 1, 1, 0], {x, n}, {y, n}, {z, n}, {t, n}, {h, n}];Table[g[n,5] , {n, 1, 15}]
    Table[n^4 * EulerPhi[n], {n, 1, 33}] (* Amiram Eldar, Dec 06 2020 *)

Formula

From Álvar Ibeas, Nov 24 2017: (Start)
a(n) = phi(n^5) = n^4 * phi(n), where phi=A000010.
Dirichlet g.f.: zeta(s - 5) / zeta(s - 4). The n-th term of the Dirichlet inverse is n^4 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega = A001221.
(End)
Sum_{k=1..n} a(k) ~ n^6 / Pi^2. - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^6 - p^5 - p + 1)) = 1.07162935672651489627... - Amiram Eldar, Dec 06 2020

A239442 a(n) = phi(n^7).

Original entry on oeis.org

1, 64, 1458, 8192, 62500, 93312, 705894, 1048576, 3188646, 4000000, 17715610, 11943936, 57921708, 45177216, 91125000, 134217728, 386201104, 204073344, 846825858, 512000000, 1029193452, 1133799040, 3256789558, 1528823808, 4882812500, 3706989312, 6973568802, 5782683648, 16655052988
Offset: 1

Views

Author

Keywords

Comments

Number of solutions of the equation gcd(x_1^2 + ... + x_7^2, n)=1 with 0 < x_i <= n.

Crossrefs

Defining Phi_k(n):= number of solutions of the equation gcd(x_1^2 + ... + x_k^2, n) = 1 with 0 < x_i <= n.
Phi_1(n) = phi(n) = A000010.
Phi_2(n) = A079458.
Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191.
Phi_4(n) = A227499.
Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533.
Phi_6(n) = A238534.
Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442.
Phi_8(n) = A239441.
Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443.

Programs

Formula

a(n) = n^6*phi(n).
Dirichlet g.f.: zeta(s - 7) / zeta(s - 6). The n-th term of the Dirichlet inverse is n^6 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega=A001221. - Álvar Ibeas, Nov 24 2017
Sum_{k=1..n} a(k) ~ 3*n^8 / (4*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^8 - p^7 - p + 1)) = 1.01646280485545934937... - Amiram Eldar, Dec 06 2020

A239443 a(n) = phi(n^9), where phi = A000010.

Original entry on oeis.org

1, 256, 13122, 131072, 1562500, 3359232, 34588806, 67108864, 258280326, 400000000, 2143588810, 1719926784, 9788768652, 8854734336, 20503125000, 34359738368, 111612119056, 66119763456, 305704134738, 204800000000, 453874312332, 548758735360, 1722841676182, 880602513408, 3051757812500
Offset: 1

Views

Author

Keywords

Comments

Number of solutions of the equation GCD(x_1^2 + ... + x_9^2,n)=1 with 0 < x_i <= n.
In general, for m>0, Sum_{k=1..n} phi(k^m) ~ 6 * n^(m+1) / ((m+1)*Pi^2). - Vaclav Kotesovec, Feb 02 2019

Crossrefs

Defining Phi_k(n):= number of solutions of the equation GCD(x_1^2 + ... + x_k^2,n)=1 with 0 < x_i <= n.
Phi_1(n) = phi(n) = A000010(n).
Phi_2(n) = A079458(n).
Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191(n).
Phi_4(n) = A227499(n).
Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533(n).
Phi_6(n) = A238534(n).
Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442(n).
Phi_8(n) = A239441(n).
Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443(n).

Programs

Formula

Dirichlet g.f.: zeta(s - 9) / zeta(s - 8). The n-th term of the Dirichlet inverse is n^8 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega = A001221. - Álvar Ibeas, Nov 24 2017
a(n) = n^8 * phi(n). - Altug Alkan, Mar 10 2018
Sum_{k=1..n} a(k) ~ 3*n^10 / (5*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^10 - p^9 - p + 1)) = 1.00399107654133714629... - Amiram Eldar, Dec 06 2020

A238534 Number of solutions to gcd(u^2 + v^2 + w^2 + x^2 + y^2 + z^2, n) = 1 with u, v, w, x, y, z in [0,n-1].

Original entry on oeis.org

1, 32, 504, 2048, 12400, 16128, 101136, 131072, 367416, 396800, 1611720, 1032192, 4453488, 3236352, 6249600, 8388608, 22713088, 11757312, 44576280, 25395200, 50972544, 51575040, 141611184, 66060288, 193750000, 142511616, 267846264, 207126528, 574288624
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local i, j, k, S1, S2,  S4,  S6,G;
      G:= select(t -> igcd(t,n)=1, [$1..n-1]);
      S1:= Array(0..n-1);
      for i from 0 to n-1 do j:= i^2 mod n; S1[j]:= S1[j]+1; od;
      S2:= Array(0..n-1);
      for i from 0 to n-1 do
        for j from 0 to n-1 do
          k:= i^2 + j mod n;
          S2[k]:= S2[k]+S1[j];
      od od:
      S4:= Array(0..n-1);
      for i from 0 to n-1 do
        for j from 0 to n-1 do
          k:= i + j mod n;
          S4[k]:= S4[k]+S2[i]*S2[j];
      od od:
      S6:= Array(0..n-1);
      for i from 0 to n-1 do
        for j from 0 to n-1 do
          k:= i + j mod n;
          S6[k]:= S6[k]+S4[i]*S2[j];
      od od:
      add(S6[i],i=G);
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Mar 05 2018
  • Mathematica
    g[n_, 6] := g[n, 6] = Sum[If[GCD[u^2+v^2+w^2+x^2+y^2+z^2, n] == 1, 1, 0], {u, n}, {v, n}, {w, n}, {x, n}, {y, n}, {z, n}]; Table[g[n, 6], {n, 1, 12}]
    f[p_, e_] := (p - 1)*p^(6*e - 4)*(p^3 - (-1)^(3*(p - 1)/2)); f[2, e_] := 2^(6*e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Sep 07 2023 *)
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^6)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)))} \\ Andrew Howroyd, Aug 06 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p==2, 2^(6*e-1), (p - 1)*p^(6*e - 4)*(p^3 - (-1)^(3*(p-1)/2))))} \\ Andrew Howroyd, Aug 07 2018

Formula

Multiplicative with a(2^e) = 2^(6*e-1), a(p^e) = (p - 1)*p^(6*e - 4)*(p^3 - (-1)^(3*(p-1)/2)) for odd prime p. - Andrew Howroyd, Aug 07 2018
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-6) * (1 - 1/2^(s-5)) * Product_{p prime > 2} (1 - 1/p^(s-5) - (-1)^(3*(p-1)/2)*(p-1)/p^(s-2)).
Sum_{k=1..n} a(k) = c * n^7 + O(n^6 * log(n)), where c = (3/28) * Product_{p prime == 1 (mod 4)} (1 - 1/p^2 - 1/p^4 + 1/p^5) * Product_{p prime == 3 (mod 4)} (1 - 1/p^2 + 1/p^4 - 1/p^5) = 0.08756841635... (Calderón et al., 2015). (End)

Extensions

a(16)-a(29) from Giovanni Resta, Mar 05 2014

A239441 Number of invertible octonions over Z/nZ.

Original entry on oeis.org

1, 128, 4320, 32768, 312000, 552960, 4939200, 8388608, 28343520, 39936000, 194858400, 141557760, 752955840, 632217600, 1347840000, 2147483648, 6565340160, 3627970560, 16089567840, 10223616000, 21337344000, 24941875200, 74905892160, 36238786560, 121875000000, 96378347520
Offset: 1

Views

Author

Keywords

Comments

Number of octonions over Z/nZ with invertible norm; i.e., number of solutions of the equation gcd(x_1^2 + ... + x_8^2, n)=1 with 0 < x_i <= n.

Crossrefs

Sequences giving the number of solutions to the equation gcd(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).

Programs

  • Mathematica
    fa=FactorInteger;lon[n_]:=Length[fa[n]];Phi[k_, n_] := Which[Mod[k, 2] == 1, n^(k - 1)*EulerPhi[n], Mod[k, 4] ==0, n^(k - 1)*EulerPhi[n]*Product[1 - 1/fa[2n][[i, 1]]^(k/2), {i, 2, lon[2 n]}],True, n^(k - 1)*EulerPhi[n]*Product[Which[ Mod[fa[ n][[i, 1]], 4] == 3 , 1 + 1/fa[ n][[i, 1]]^(k/2), Mod[fa[ n][[i, 1]], 4] == 1, 1 - 1/fa[ n][[i, 1]]^(k/2), True, 1], {i, 1, lon[ n]}]]; Table[Phi[8,n],{n,1,100}]
    f[p_, e_] := (p-1)*p^(8*e-1) * If[p == 2, 1, 1 - 1/p^4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Feb 13 2024 *)
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^8)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)))} \\ Andrew Howroyd, Aug 06 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p==2, 2^(8*e-1), (p - 1)*p^(8*e - 5)*(p^4 - 1)))} \\ Andrew Howroyd, Aug 06 2018

Formula

Multiplicative with a(2^e) = 2^(8*e-1), a(p^e) = (p - 1)*p^(8*e - 5)*(p^4 - 1) for odd prime p. - Andrew Howroyd, Aug 06 2018
Sum_{k=1..n} a(k) ~ c * n^9, where c = (16/141) * Product_{p prime} (1 - 1/p^2 - 1/p^5 + 1/p^6) = 0.06731687367... . - Amiram Eldar, Nov 30 2022
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-8) * (1 - 1/2^(s-7)) * Product_{p prime > 2} (1 - 1/p^(s-7) - (p-1)/p^(s-3)).
Sum_{n>=1} 1/a(n) = (257*Pi^14/1312151400) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^6 + 1/p^9 + 1/p^10 + 1/p^12 - 1/p^14) = 1.00807991170717322545... . (End)

A239611 a(n) = Sum_{0 < x,y <= n and gcd(x^2 + y^2, n)=1} gcd(x^2 + y^2 - 1, n).

Original entry on oeis.org

1, 4, 16, 32, 32, 64, 96, 192, 216, 128, 240, 512, 288, 384, 512, 1024, 512, 864, 720, 1024, 1536, 960, 1056, 3072, 1200, 1152, 2592, 3072, 1568, 2048, 1920, 5120, 3840, 2048, 3072, 6912, 2592, 2880, 4608, 6144, 3200, 6144, 3696, 7680, 6912, 4224, 4416
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative by the Chinese remainder theorem since gcd(x, m*n) = gcd(x, m)*gcd(x, n) for gcd(m, n) = 1. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    g2[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}]; Array[g2,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, if (gcd(x^2+y^2,n) == 1, s += gcd(x^2+y^2-1,n)););); s;} \\ Michel Marcus, Jun 29 2014

A239612 a(n) = Sum_{0 < x,y,z <= n and gcd(x^2 + y^2 + z^2, n)=1} gcd(x^2 + y^2 + z^2 - 1, n).

Original entry on oeis.org

1, 8, 30, 112, 220, 240, 546, 1280, 1134, 1760, 2310, 3360, 4212, 4368, 6600, 13312, 9520, 9072, 12654, 24640, 16380, 18480, 22770, 38400, 42500, 33696, 39366, 61152, 47908, 52800, 56730, 131072, 69300, 76160, 120120, 127008, 99900, 101232, 126360, 281600
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.

Crossrefs

Programs

  • Mathematica
    g3[n_] := Sum[If[GCD[x^2 + y^2 + z^2, n] == 1, GCD[x^2 + y^2 + z^2 - 1, n], 0],{x, 1, n},{y, 1, n},{z,1,n}]; Array[g3,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, for (z=1, n, if (gcd(x^2+y^2+z^2,n) == 1, s += gcd(x^2+y^2+z^2-1,n));););); s;} \\ Michel Marcus, Jun 29 2014
    
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^3)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))} \\ Andrew Howroyd, Aug 07 2018

Extensions

Keyword:mult added by Andrew Howroyd, Aug 07 2018

A239613 a(n) = Sum_{0 < x,y,z,t <= n and gcd(x^2 + y^2 + z^2 + t^2, n)=1} gcd(x^2 + y^2 + z^2 + t^2 - 1, n).

Original entry on oeis.org

1, 16, 96, 384, 960, 1536, 4032, 8192, 11664, 15360, 26400, 36864, 52416, 64512, 92160, 163840, 156672, 186624, 246240, 368640, 387072, 422400, 534336, 786432, 900000, 838656, 1259712, 1548288, 1364160, 1474560, 1785600, 3145728
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.

Crossrefs

Programs

  • Mathematica
    g4[n_] := Sum[If[GCD[x^2 + y^2+ z^2+ t^2, n] == 1, GCD[x^2 + y^2+ z^2+ t^2 - 1, n], 0], {x, 1, n}, {y, 1, n},{z,1,n},{t,1,n}]; Array[g4,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, for (z=1, n, for (t=1, n, if (gcd(x^2+y^2+z^2+t^2,n) == 1, s += gcd(x^2+y^2+z^2+t^2-1,n)););););); s;} \\ Michel Marcus, Jun 29 2014
    
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^4)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))} \\ Andrew Howroyd, Aug 07 2018

Extensions

Keyword:mult added by Andrew Howroyd, Aug 07 2018
Showing 1-10 of 15 results. Next