cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A239614 a(n) = A239611(n) / A079458(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 8, 2, 6, 2, 8, 4, 4, 2, 12, 3, 4, 4, 8, 2, 8, 2, 10, 4, 4, 4, 12, 2, 4, 4, 12, 2, 8, 2, 8, 6, 4, 2, 16, 3, 6, 4, 8, 2, 8, 4, 12, 4, 4, 2, 16, 2, 4, 6, 12, 4, 8, 2, 8, 4, 8, 2, 18, 2, 4, 6, 8, 4, 8, 2, 16, 5, 4, 2, 16, 4, 4, 4, 12, 2, 12, 4, 8, 4, 4, 4, 20, 2, 6, 6, 12, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative because both A239611 and A079458 are. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    a239611[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}];
    a079458[n_] := Product[{p, e} = pe; Which[p==2, 2^(2e-1), Mod[p, 4]==3, (p^2-1)p^(2e-2), Mod[p, 4]==1, (p-1)^2 p^(2e-2)], {pe, FactorInteger[n]}];
    a[1] = 1; a[n_] := a239611[n]/a079458[n];
    Array[a, 105] (* Jean-François Alcover, Dec 04 2018 *)

Formula

Conjectures from Ridouane Oudra, Jul 22 2024: (Start)
a(n) = A010710(n)*tau(n) - 2*tau(2n) ;
a(2*n) = 2*tau(n) ;
a(2*n+1) = tau(2*n+1). (End)

Extensions

More terms from Antti Karttunen, Sep 23 2017

A127473 a(n) = phi(n)^2.

Original entry on oeis.org

1, 1, 4, 4, 16, 4, 36, 16, 36, 16, 100, 16, 144, 36, 64, 64, 256, 36, 324, 64, 144, 100, 484, 64, 400, 144, 324, 144, 784, 64, 900, 256, 400, 256, 576, 144, 1296, 324, 576, 256, 1600, 144, 1764, 400, 576, 484, 2116, 256, 1764, 400, 1024, 576, 2704, 324, 1600
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

Number of maps of the form j |--> m*j + d with gcd(m, n) = 1 and gcd(d, n) = 1 from [1, 2, ..., n] to itself. - Joerg Arndt, Aug 29 2014
Right border of A127474.
Equals the Mobius transform (A054525) of A029939. - Gary W. Adamson, Aug 20 2008
From Jianing Song, Apr 14 2019: (Start)
a(n) is the number of solutions to gcd(xy, n) = 1 with x, y in [0, n-1].
Let Z_n be the ring of integers modulo n, then a(n) is the number of invertible elements in the ring Z_n[x]/(x^2 - x) (or equivalently, Z_n[x]/(x^2 + x)) with discriminant d = 1 (that is, a(n) is the size of the group G(n) = (Z_n[x]/(x^2 - x))*). Actually, G(n) is isomorphic to (Z_n)* X (Z_n)*. (End)

Examples

			a(5) = 16 since phi(5) = 4.
		

Crossrefs

Similar sequences: A082953 (size of (Z_n[x]/(x^2 - 1))*, d = 4), A002618 ((Z_n[x]/(x^2))*, d = 0), A079458 ((Z_n[x]/(x^2 + 1))*, d = -4), A319445 ((Z_n[x]/(x^2 - x + 1))* or (Z_n[x]/(x^2 + x + 1))*, d = -3).

Programs

Formula

a(n) = A000010(n)^2.
Multiplicative with a(p^e) = (p-1)^2*p^(2e-2), e >= 1. Dirichlet g.f. zeta(s-2)*Product_{primes p} (1 - 2/p^(s-1) + 1/p^s). - R. J. Mathar, Apr 04 2011
Sum_{k>=1} 1/a(k) = A109695. - Vaclav Kotesovec, Sep 20 2020
Sum_{k>=1} (-1)^k/a(k) = (1/7) * A109695. - Amiram Eldar, Nov 11 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime}(1 - (2*p-1)/p^3) = A065464 / 3 = 0.142749... . - Amiram Eldar, Oct 25 2022
a(n) = Sum_{d|n} mu(n/d)*phi(n*d). - Ridouane Oudra, Jul 23 2025

A062327 Number of divisors of n over the Gaussian integers.

Original entry on oeis.org

1, 3, 2, 5, 4, 6, 2, 7, 3, 12, 2, 10, 4, 6, 8, 9, 4, 9, 2, 20, 4, 6, 2, 14, 9, 12, 4, 10, 4, 24, 2, 11, 4, 12, 8, 15, 4, 6, 8, 28, 4, 12, 2, 10, 12, 6, 2, 18, 3, 27, 8, 20, 4, 12, 8, 14, 4, 12, 2, 40, 4, 6, 6, 13, 16, 12, 2, 20, 4, 24, 2, 21, 4, 12, 18, 10, 4, 24, 2, 36, 5, 12, 2, 20, 16, 6
Offset: 1

Views

Author

Reiner Martin, Jul 12 2001

Keywords

Comments

Divisors which are associates are identified (two Gaussian integers z1, z2 are associates if z1 = u * z2 where u is a unit, i.e., one of 1, i, -1, -i).
a(A004614(n)) = A000005(n). - Vladeta Jovovic, Jan 23 2003
a(A004613(n)) = A000005(n)^2. - Benedikt Otten, May 22 2013

Examples

			For example, 5 has divisors 1, 1+2i, 2+i and 5.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): this sequence ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319442.

Programs

  • Haskell
    a062327 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f 2 e                  = 2 * e + 1
       f p e | p `mod` 4 == 1 = (e + 1) ^ 2
             | otherwise      = e + 1
    -- Reinhard Zumkeller, Oct 18 2011
    
  • Maple
    a:= n-> mul(`if`(i[1]=2, 2*i[2]+1, `if`(irem(i[1], 4)=3,
                     i[2]+1, (i[2]+1)^2)), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 09 2021
  • Mathematica
    Table[Length[Divisors[n, GaussianIntegers -> True]], {n, 30}] (* Alonso del Arte, Jan 25 2011 *)
    DivisorSigma[0,Range[90],GaussianIntegers->True] (* Harvey P. Dale, Mar 19 2017 *)
  • PARI
    a(n)=
    {
        my(r=1,f=factor(n));
        for(j=1,#f[,1], my(p=f[j,1],e=f[j,2]);
            if(p==2,r*=(2*e+1));
            if(p%4==1,r*=(e+1)^2);
            if(p%4==3,r*=(e+1));
        );
        return(r);
    }  \\ Joerg Arndt, Dec 09 2016

Formula

Presumably a(n) = 2 iff n is a rational prime == 3 mod 4 (see A045326). - N. J. A. Sloane, Jan 07 2003, Feb 23 2007
Multiplicative with a(2^e) = 2*e+1, a(p^e) = e+1 if p mod 4=3 and a(p^e) = (e+1)^2 if p mod 4=1. - Vladeta Jovovic, Jan 23 2003

A078458 Total number of factors in a factorization of n into Gaussian primes.

Original entry on oeis.org

0, 2, 1, 4, 2, 3, 1, 6, 2, 4, 1, 5, 2, 3, 3, 8, 2, 4, 1, 6, 2, 3, 1, 7, 4, 4, 3, 5, 2, 5, 1, 10, 2, 4, 3, 6, 2, 3, 3, 8, 2, 4, 1, 5, 4, 3, 1, 9, 2, 6, 3, 6, 2, 5, 3, 7, 2, 4, 1, 7, 2, 3, 3, 12, 4, 4, 1, 6, 2, 5, 1, 8, 2, 4, 5, 5, 2, 5, 1, 10, 4, 4, 1, 6, 4, 3, 3, 7, 2, 6, 3, 5, 2, 3, 3, 11, 2, 4, 3, 8, 2, 5, 1, 8
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2003

Keywords

Comments

a(n)+1 is also the total number of factors in a factorization of n+n*i into Gaussian primes. - Jason Kimberley, Dec 17 2011
Record high values are at a(2^k) = 2*k for k = 0, 1, 2, ... . - Bill McEachen, Oct 11 2022

Examples

			2 = (1+i)*(1-i), so a(2) = 2; 9 = 3*3, so a(9) = 2.
a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 3*a(2)+2*a(3)+4*a(5)+5*a(7)+3*a(11) = 3*2+2*1+4*2+5*1+3*1 = 24. - _Vladeta Jovovic_, Jan 20 2003
		

Crossrefs

Cf. A239626, A239627 (including units).
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), this sequence ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319444.

Programs

  • Mathematica
    Join[{0}, Table[f = FactorInteger[n, GaussianIntegers -> True]; cnt = Total[Transpose[f][[2]]]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt--]; cnt, {n, 2, 100}]] (* T. D. Noe, Mar 31 2014 *)
    a[n_]:=PrimeOmega[n, GaussianIntegers -> True]; Array[a,104] (* Stefano Spezia, Sep 29 2024 *)
  • PARI
    a(n)=my(f=factor(n)); sum(i=1,#f~,if(f[i,1]%4==3,1,2)*f[i,2]) \\ Charles R Greathouse IV, Mar 31 2014

Formula

Fully additive with a(p)=2 if p=2 or p mod 4=1 and a(p)=1 if p mod 4=3. - Vladeta Jovovic, Jan 20 2003
a(n) depends on the number of primes of the forms 4k+1 (A083025) and 4k-1 (A065339) and on the highest power of 2 dividing n (A007814): a(n) = 2*A007814(n) + 2*A083025(n) + A065339(n). - T. D. Noe, Jul 14 2003

Extensions

More terms from Vladeta Jovovic, Jan 12 2003

A227499 Number of the Lipschitz quaternions in a reduced system modulo n.

Original entry on oeis.org

1, 8, 48, 128, 480, 384, 2016, 2048, 3888, 3840, 13200, 6144, 26208, 16128, 23040, 32768, 78336, 31104, 123120, 61440, 96768, 105600, 267168, 98304, 300000, 209664, 314928, 258048, 682080, 184320, 892800, 524288, 633600, 626688, 967680, 497664, 1822176
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    cuater[n_] := Flatten[Table[{a, b,c,d},{a, n}, {b, n}, {c, n}, {d, n}], 3]; a[n_] := Length@Select[cuater[n], GCD[#.#, n] == 1 &]; Array[a,20]
    f[p_, e_] := (p-1)*p^(4*e-1) * If[p == 2, 1, 1 - 1/p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 13 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i, 2]; (p-1)*p^(4*e-1) * if(p == 2, 1, 1 - 1/p^2));} \\ Amiram Eldar, Feb 13 2024

Formula

Multiplicative: a(2^s) = 2^(4s-1); a(3^s) = 16*3^(4s-3); a(5^s) = 32*3*5^(4s-3).
From Amiram Eldar, Feb 13 2024: (Start)
Multiplicative with a(2^e) = 2^(4*e-1), and a(p^e) = p^(4*e-3) * (p-1)^2 * (p+1) for an odd prime p.
Dirichlet g.f.: zeta(s-4) * (1 - 1/2^(s-3)) * Product_{p prime > 2} (1 - 1/p^(s-3) - (p-1)/p^(s-1)).
Sum_{k=1..n} a(k) = (12/55) * c * n^5 + O(n^4 * log(n)), where c = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.53589615382833799980... (Calderón et al., 2015).
Sum_{n>=1} 1/a(n) = (17*Pi^8/57240) * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^5 + 2/p^6 - 1/p^8) = 1.16039588611967540703... . (End)

A086275 Number of distinct Gaussian primes in the factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 2, 2, 3, 1, 2, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 2, 4, 1, 1, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 3, 3, 3, 2, 2, 3, 2, 2, 3, 1, 4, 2, 2, 2, 1, 4, 3, 1, 3, 2, 4, 1, 2, 2, 3, 3, 2, 2, 4, 1, 3, 1, 3, 1, 3, 4, 2, 3, 2, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 1

Views

Author

T. D. Noe, Jul 14 2003

Keywords

Comments

As shown in the formula, a(n) depends on the number of distinct primes of the forms 4*k+1 (A005089) and 4*k-1 (A005091) and whether n is divisible by 2 (A059841).
Note that associated divisors are counted only once. - Jianing Song, Aug 30 2018

Examples

			a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 1 + 2*1 + 3 = 6 because n is divisible by 2, has 1 prime factor of the form 4*k+1 and 3 primes of the form 4*k+3. Over the Gaussian integers, 1006655265000 is factored as i*(1 + i)^6*(2 + i)^4*(2 - i)^4*3^2*7^5*11^3, the 6 distinct Gaussian factors are 1 + i, 2 + i, 2 - i, 3, 7 and 11.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), this sequence ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319443.

Programs

  • Mathematica
    Join[{0}, Table[f=FactorInteger[n, GaussianIntegers->True]; cnt=Length[f]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt-- ]; cnt, {n, 2, 100}]]
    a[n_]:=If[n==2,1,PrimeNu[n, GaussianIntegers -> True]]; Array[a,100] (* Stefano Spezia, Sep 29 2024 *)
  • PARI
    a(n)=my(f=factor(n)[,1]); sum(i=1,#f,if(f[i]%4==1,2,1)) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = A059841(n) + 2*A005089(n) + A005091(n).
Additive with a(p^e) = 2 if p = 1 (mod 4), 1 otherwise. - Franklin T. Adams-Watters, Oct 18 2006

A319445 Number of Eisenstein integers in a reduced system modulo n.

Original entry on oeis.org

1, 3, 6, 12, 24, 18, 36, 48, 54, 72, 120, 72, 144, 108, 144, 192, 288, 162, 324, 288, 216, 360, 528, 288, 600, 432, 486, 432, 840, 432, 900, 768, 720, 864, 864, 648, 1296, 972, 864, 1152, 1680, 648, 1764, 1440, 1296, 1584, 2208, 1152, 1764, 1800, 1728, 1728, 2808
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Equivalent of phi (A000010) in the ring of Eisenstein integers.
Number of units in the ring Z[w]/nZ[w], where Z[w] is the ring of Eisenstein integers.
a(n) is the number of elements in G(n) = {a + b*w: a, b in Z/nZ and gcd(a^2 + a*b + b^2, n) = 1} where w = (1 + sqrt(3)*i)/2.
a(n) is the number of ordered pairs (a, b) modulo n such that gcd(a^2 + a*b + b^2, n) = 1.
For n > 2, a(n) is divisible by 6.

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2.
{1, w, w'} is the set of 3 units in the Eisenstein integers modulo 2, so a(2) = 3.
{1, w, w^2, -1, w', w'^2} is the set of 6 units in the Eisenstein integers modulo 3, so a(3) = 6.
{1, w, w'} is the set of 3 units in the Eisenstein integers modulo 2, so a(2) = 3.
{1, w, 1 + w, w', 1 + w', -1 + 2w, -1, -w, -1 - w, -w', -1 - w', -1 + 2w'} is the set of 12 units in the Eisenstein integers modulo 4, so a(4) = 12.
		

Crossrefs

Cf. A007434.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), A319449 ("sigma", A000203), this sequence ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A079458.

Programs

  • Mathematica
    f[p_, e_] := If[p == 3 , 2*3^(2*e - 1), Switch[Mod[p, 3], 1, (p - 1)^2*p^(2*e - 2), 2, (p^2 - 1)*p^(2*e - 2)]]; eisPhi[1] = 1; eisPhi[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisPhi, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==3, r*=2*3^(2*e-1));
            if(p%3==1, r*=(p-1)^2*p^(2*e-2));
            if(p%3==2, r*=(p^2-1)*p^(2*e-2));
        );
        return(r);
    }

Formula

Multiplicative with a(3^e) = 2*3^(2*e-1), a(p^e) = phi(p^e)^2 = (p-1)^2*p^(2*e-2) if p == 1 (mod 3) and J_2(p^e) = A007434(p^e) = (p^2 - 1)*p^(2*e-2) if p == 2 (mod 3).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (8/27) * Product_{p prime == 1 (mod 3)} (1 - 2/p^2 + 1/p^3) * Product_{p prime == 2 (mod 3)} (1 - 1/p^3) = 0.2410535987... . - Amiram Eldar, Feb 13 2024

A227334 Exponent of the group of the Gaussian integers in a reduced system modulo n.

Original entry on oeis.org

1, 2, 8, 4, 4, 8, 48, 4, 24, 4, 120, 8, 12, 48, 8, 8, 16, 24, 360, 4, 48, 120, 528, 8, 20, 12, 72, 48, 28, 8, 960, 16, 120, 16, 48, 24, 36, 360, 24, 4, 40, 48, 1848, 120, 24, 528, 2208, 8, 336, 20, 16, 12, 52, 72, 120, 48, 360, 28, 3480, 8, 60, 960, 48, 32
Offset: 1

Views

Author

Keywords

Comments

a(n) is the exponent of the multiplicative group of Gaussian integers modulo n, i.e., (Z[i]/nZ[i])* = {a + b*i: a, b in Z/nZ and gcd(a^2 + b^2, n) = 1}. The number of elements in (Z[i]/nZ[i])* is A079458(n).
For n > 2, a(n) is divisible by 4. - Jianing Song, Aug 29 2018
From Jianing Song, Sep 23 2018: (Start)
Equivalent of psi (A002322) in the ring of Gaussian integers.
a(n) is the smallest positive e such that for any Gaussian integer z coprime to n we have z^e == 1 (mod n).
By definition, A079458(n)/a(n) is always an integer, and is 1 iff (Z[i]/nZ[i])* is cyclic, that is, rank((Z[i]/nZ[i])*) = A316506(n) = 0 or 1, and n has a primitive root in (Z[i]/nZ[i])*. A079458(n)/a(n) = 1 iff n = 1, 2 or a prime congruent to 3 modulo 4. (End)

Examples

			Let G = (Z[i]/4Z[i])* = {i, 3i, 1, 1 + 2i, 2 + i, 2 + 3i, 3, 3 + 2i}. The possibilities for the exponent of G are 8, 4, 2 and 1. G^4 = {x^4 mod 4 : x belongs to G} = {1} and i^2 !== 1 (mod 4). Therefore, the exponent of G is greater than 2, accordingly the exponent of G is 4 and a(4) = 4.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), this sequence ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319446.

Programs

  • Mathematica
    fa = FactorInteger;lamas[1] = 1;lamas[p_, s_]:= Which[Mod[p, 4]==3,p^(s-1)(p^2 - 1), Mod[p, 4] == 1, p^(s - 1)(p - 1), s ≥ 4, 2^(s - 1), s > 1, 4, s == 1, 2]; lamas[n_] := {aux = 1; Do[aux = LCM[aux, lamas[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length@fa[n]}]; aux}[[1]]; Table[lamas[n], {n, 100}]
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2&&e<=2, r=lcm(r,2^e));
            if(p==2&&e>=3, r=lcm(r,2^(e-1)));
            if(p%4==1, r=lcm(r,(p-1)*p^(e-1)));
            if(p%4==3, r=lcm(r,(p^2-1)*p^(e-1)));
        );
        return(r);
    } \\ Jianing Song, Aug 29 2018

Formula

a(2^e) = 2^e if e <= 2 and 2^(e-1) if e >= 3, a(p^e) = (p - 1)*p^(e-1) if p == 1 (mod 4) and (p^2 - 1)*p^(e-1) if p == 3 (mod 4). If gcd(m, n) = 1 then a(mn) = lcm(a(m), a(n)). - Jianing Song, Aug 29 2018 [See the group structure of (Z[i]/(pi^e)Z[i])* in A316506, where pi is a prime element in Z[i]. - Jianing Song, Oct 03 2022]

A238533 Number of solutions to gcd(x^2 + y^2 + z^2 + t^2 + h^2, n) = 1 with x,y,z,t,h in [0,n-1].

Original entry on oeis.org

1, 16, 162, 512, 2500, 2592, 14406, 16384, 39366, 40000, 146410, 82944, 342732, 230496, 405000, 524288, 1336336, 629856, 2345778, 1280000, 2333772, 2342560, 6156502, 2654208, 7812500, 5483712, 9565938, 7375872, 19803868, 6480000, 27705630, 16777216, 23718420
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. n^k * a(n): A000010 (k=-4), A002618 (k=-3), A053191 (k=-2), A189393 (k=-1), A239442 (k=2), A239443 (k=4).

Programs

  • Mathematica
    g[n_, 5] := g[n, 5] = Sum[If[GCD[x^2 + y^2 + z^2 + t^2 + h^2, n] == 1, 1, 0], {x, n}, {y, n}, {z, n}, {t, n}, {h, n}];Table[g[n,5] , {n, 1, 15}]
    Table[n^4 * EulerPhi[n], {n, 1, 33}] (* Amiram Eldar, Dec 06 2020 *)

Formula

From Álvar Ibeas, Nov 24 2017: (Start)
a(n) = phi(n^5) = n^4 * phi(n), where phi=A000010.
Dirichlet g.f.: zeta(s - 5) / zeta(s - 4). The n-th term of the Dirichlet inverse is n^4 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega = A001221.
(End)
Sum_{k=1..n} a(k) ~ n^6 / Pi^2. - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^6 - p^5 - p + 1)) = 1.07162935672651489627... - Amiram Eldar, Dec 06 2020

A317797 Sum of the norm of divisors of n over Gaussian integers, with associated divisors counted only once.

Original entry on oeis.org

1, 7, 10, 31, 36, 70, 50, 127, 91, 252, 122, 310, 196, 350, 360, 511, 324, 637, 362, 1116, 500, 854, 530, 1270, 961, 1372, 820, 1550, 900, 2520, 962, 2047, 1220, 2268, 1800, 2821, 1444, 2534, 1960, 4572, 1764, 3500, 1850, 3782, 3276, 3710, 2210, 5110, 2451, 6727
Offset: 1

Views

Author

Jianing Song, Aug 07 2018

Keywords

Comments

Equivalent of sigma (A000203) in the ring of Gaussian integers. Note that only norms are summed up.

Examples

			Let ||d|| denote the norm of d.
a(2) = ||1|| + ||1 + i|| + ||2|| = 1 + 2 + 4 = 7.
a(5) = ||1|| + ||2 + i|| + ||2 - i|| + ||5|| = 1 + 5 + 5 + 25 = 36. Note that 2 - i and 1 + 2i are associated so their norm is only counted once.
		

Crossrefs

Cf. A001157.
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), this sequence ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319449.

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2^(2*e + 1) - 1, Switch[Mod[p, 4], 1, ((p^(e + 1) - 1)/(p - 1))^2, 3, (p^(2 e + 2) - 1)/(p^2 - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 12 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2, r*=(2^(2*e+1)-1));
            if(Mod(p,4)==1, r*=((p^(e+1)-1)/(p-1))^2);
            if(Mod(p,4)==3, r*=(p^(2*e+2)-1)/(p^2-1));
        );
        return(r);
    }

Formula

Multiplicative with a(2^e) = sigma(2^(2e)) = 2^(2e+1) - 1, a(p^e) = sigma(p^e)^2 = ((p^(e+1) - 1)/(p - 1))^2 if p == 1 (mod 4) and sigma_2(p^e) = A001157(p^e) = (p^(2e+2) - 1)/(p^2 - 1) if p == 3 (mod 4).
Showing 1-10 of 25 results. Next