cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A079458 Number of Gaussian integers in a reduced system modulo n.

Original entry on oeis.org

1, 2, 8, 8, 16, 16, 48, 32, 72, 32, 120, 64, 144, 96, 128, 128, 256, 144, 360, 128, 384, 240, 528, 256, 400, 288, 648, 384, 784, 256, 960, 512, 960, 512, 768, 576, 1296, 720, 1152, 512, 1600, 768, 1848, 960, 1152, 1056, 2208, 1024, 2352, 800, 2048, 1152, 2704
Offset: 1

Views

Author

Vladeta Jovovic, Jan 14 2003

Keywords

Comments

Number of units in the ring consisting of the Gaussian integers modulo n. - Jason Kimberley, Dec 07 2015

Examples

			{1, i, 1+2i, 2+i, 3, 3i, 3+2i, 2+3i} is the set of eight units in the Gaussian integers modulo 4. - _Jason Kimberley_, Dec 07 2015
		

Crossrefs

Equals four times A218147. - Jason Kimberley, Nov 14 2015
Sequences giving the number of solutions to the equation GCD(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), this sequence ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319445.

Programs

  • Magma
    A079458 := func)>; // Jason Kimberley, Nov 14 2015
    
  • Maple
    with(GaussInt): seq(GIphi(n), n=1..100);
  • Mathematica
    phi[1]=1;phi[p_, s_] := Which[Mod[p, 4] == 3, p^(2 s - 2) (p^2 - 1), Mod[p, 4] == 1, p^(2 s - 2) ((p - 1))^2, True, 2^(2 s - 1)];phi[n_] := Product[phi[FactorInteger[n][[i, 1]], FactorInteger[n][[i, 2]]], {i, Length[FactorInteger[n]]}];Table[phi[n], {n, 1, 33}] (* José María Grau Ribas, Mar 16 2014 *)
    f[p_, e_] := (p - 1)*p^(2*e - 1) * If[p == 2, 1, 1 - (-1)^((p-1)/2)/p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 13 2024 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2, r*=2^(2*e-1));
            if(p%4==1, r*=(p-1)^2*p^(2*e-2));
            if(p%4==3, r*=(p^2-1)*p^(2*e-2));
        );
        return(r);
    } \\ Jianing Song, Sep 16 2018

Formula

Multiplicative with a(2^e) = 2^(2*e-1), a(p^e) = (p^2-1)*p^(2*e-2) if p mod 4=3 and a(p^e) = (p-1)^2*p^(2*e-2) if p mod 4=1.
a(n) = A003557(n)^2 * a(A007947(n)), where a(2)=2, a(p)=(p-1)^2 for prime p=1(mod 4), a(p)=p^2-1 for prime p=3(mod 4), and a(n*m)=a(n)*a(m) for n coprime to m. - Jason Kimberley, Nov 16 2015
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-2) * (1 - 1/2^(s-1)) * Product_{p prime > 2} (1 - 1/p^(s-1) - (-1)^((p-1)/2)*(p-1)/p^s).
Sum_{k=1..n} a(k) = c * n^3 / 3 + O(n^2 * log(n)), where c = (3/4) * Product_{p prime > 2} (1 - 1/p^2 - (-1)^((p-1)/2)*(p-1)/p^3) = (3/4) * A334427 * Product_{p prime == 1 (mod 4)} (1 - 2/p^2 + 1/p^3) = 0.6498027559... (Calderón et al., 2015). (End)
a(n) = A204617(n)*A062570(n). - Ridouane Oudra, Jun 05 2024

A062327 Number of divisors of n over the Gaussian integers.

Original entry on oeis.org

1, 3, 2, 5, 4, 6, 2, 7, 3, 12, 2, 10, 4, 6, 8, 9, 4, 9, 2, 20, 4, 6, 2, 14, 9, 12, 4, 10, 4, 24, 2, 11, 4, 12, 8, 15, 4, 6, 8, 28, 4, 12, 2, 10, 12, 6, 2, 18, 3, 27, 8, 20, 4, 12, 8, 14, 4, 12, 2, 40, 4, 6, 6, 13, 16, 12, 2, 20, 4, 24, 2, 21, 4, 12, 18, 10, 4, 24, 2, 36, 5, 12, 2, 20, 16, 6
Offset: 1

Views

Author

Reiner Martin, Jul 12 2001

Keywords

Comments

Divisors which are associates are identified (two Gaussian integers z1, z2 are associates if z1 = u * z2 where u is a unit, i.e., one of 1, i, -1, -i).
a(A004614(n)) = A000005(n). - Vladeta Jovovic, Jan 23 2003
a(A004613(n)) = A000005(n)^2. - Benedikt Otten, May 22 2013

Examples

			For example, 5 has divisors 1, 1+2i, 2+i and 5.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): this sequence ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319442.

Programs

  • Haskell
    a062327 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f 2 e                  = 2 * e + 1
       f p e | p `mod` 4 == 1 = (e + 1) ^ 2
             | otherwise      = e + 1
    -- Reinhard Zumkeller, Oct 18 2011
    
  • Maple
    a:= n-> mul(`if`(i[1]=2, 2*i[2]+1, `if`(irem(i[1], 4)=3,
                     i[2]+1, (i[2]+1)^2)), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 09 2021
  • Mathematica
    Table[Length[Divisors[n, GaussianIntegers -> True]], {n, 30}] (* Alonso del Arte, Jan 25 2011 *)
    DivisorSigma[0,Range[90],GaussianIntegers->True] (* Harvey P. Dale, Mar 19 2017 *)
  • PARI
    a(n)=
    {
        my(r=1,f=factor(n));
        for(j=1,#f[,1], my(p=f[j,1],e=f[j,2]);
            if(p==2,r*=(2*e+1));
            if(p%4==1,r*=(e+1)^2);
            if(p%4==3,r*=(e+1));
        );
        return(r);
    }  \\ Joerg Arndt, Dec 09 2016

Formula

Presumably a(n) = 2 iff n is a rational prime == 3 mod 4 (see A045326). - N. J. A. Sloane, Jan 07 2003, Feb 23 2007
Multiplicative with a(2^e) = 2*e+1, a(p^e) = e+1 if p mod 4=3 and a(p^e) = (e+1)^2 if p mod 4=1. - Vladeta Jovovic, Jan 23 2003

A078458 Total number of factors in a factorization of n into Gaussian primes.

Original entry on oeis.org

0, 2, 1, 4, 2, 3, 1, 6, 2, 4, 1, 5, 2, 3, 3, 8, 2, 4, 1, 6, 2, 3, 1, 7, 4, 4, 3, 5, 2, 5, 1, 10, 2, 4, 3, 6, 2, 3, 3, 8, 2, 4, 1, 5, 4, 3, 1, 9, 2, 6, 3, 6, 2, 5, 3, 7, 2, 4, 1, 7, 2, 3, 3, 12, 4, 4, 1, 6, 2, 5, 1, 8, 2, 4, 5, 5, 2, 5, 1, 10, 4, 4, 1, 6, 4, 3, 3, 7, 2, 6, 3, 5, 2, 3, 3, 11, 2, 4, 3, 8, 2, 5, 1, 8
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2003

Keywords

Comments

a(n)+1 is also the total number of factors in a factorization of n+n*i into Gaussian primes. - Jason Kimberley, Dec 17 2011
Record high values are at a(2^k) = 2*k for k = 0, 1, 2, ... . - Bill McEachen, Oct 11 2022

Examples

			2 = (1+i)*(1-i), so a(2) = 2; 9 = 3*3, so a(9) = 2.
a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 3*a(2)+2*a(3)+4*a(5)+5*a(7)+3*a(11) = 3*2+2*1+4*2+5*1+3*1 = 24. - _Vladeta Jovovic_, Jan 20 2003
		

Crossrefs

Cf. A239626, A239627 (including units).
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), this sequence ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319444.

Programs

  • Mathematica
    Join[{0}, Table[f = FactorInteger[n, GaussianIntegers -> True]; cnt = Total[Transpose[f][[2]]]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt--]; cnt, {n, 2, 100}]] (* T. D. Noe, Mar 31 2014 *)
    a[n_]:=PrimeOmega[n, GaussianIntegers -> True]; Array[a,104] (* Stefano Spezia, Sep 29 2024 *)
  • PARI
    a(n)=my(f=factor(n)); sum(i=1,#f~,if(f[i,1]%4==3,1,2)*f[i,2]) \\ Charles R Greathouse IV, Mar 31 2014

Formula

Fully additive with a(p)=2 if p=2 or p mod 4=1 and a(p)=1 if p mod 4=3. - Vladeta Jovovic, Jan 20 2003
a(n) depends on the number of primes of the forms 4k+1 (A083025) and 4k-1 (A065339) and on the highest power of 2 dividing n (A007814): a(n) = 2*A007814(n) + 2*A083025(n) + A065339(n). - T. D. Noe, Jul 14 2003

Extensions

More terms from Vladeta Jovovic, Jan 12 2003

A086275 Number of distinct Gaussian primes in the factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 2, 2, 3, 1, 2, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 2, 4, 1, 1, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 3, 3, 3, 2, 2, 3, 2, 2, 3, 1, 4, 2, 2, 2, 1, 4, 3, 1, 3, 2, 4, 1, 2, 2, 3, 3, 2, 2, 4, 1, 3, 1, 3, 1, 3, 4, 2, 3, 2, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 1

Views

Author

T. D. Noe, Jul 14 2003

Keywords

Comments

As shown in the formula, a(n) depends on the number of distinct primes of the forms 4*k+1 (A005089) and 4*k-1 (A005091) and whether n is divisible by 2 (A059841).
Note that associated divisors are counted only once. - Jianing Song, Aug 30 2018

Examples

			a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 1 + 2*1 + 3 = 6 because n is divisible by 2, has 1 prime factor of the form 4*k+1 and 3 primes of the form 4*k+3. Over the Gaussian integers, 1006655265000 is factored as i*(1 + i)^6*(2 + i)^4*(2 - i)^4*3^2*7^5*11^3, the 6 distinct Gaussian factors are 1 + i, 2 + i, 2 - i, 3, 7 and 11.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), this sequence ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319443.

Programs

  • Mathematica
    Join[{0}, Table[f=FactorInteger[n, GaussianIntegers->True]; cnt=Length[f]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt-- ]; cnt, {n, 2, 100}]]
    a[n_]:=If[n==2,1,PrimeNu[n, GaussianIntegers -> True]]; Array[a,100] (* Stefano Spezia, Sep 29 2024 *)
  • PARI
    a(n)=my(f=factor(n)[,1]); sum(i=1,#f,if(f[i]%4==1,2,1)) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = A059841(n) + 2*A005089(n) + A005091(n).
Additive with a(p^e) = 2 if p = 1 (mod 4), 1 otherwise. - Franklin T. Adams-Watters, Oct 18 2006

A227334 Exponent of the group of the Gaussian integers in a reduced system modulo n.

Original entry on oeis.org

1, 2, 8, 4, 4, 8, 48, 4, 24, 4, 120, 8, 12, 48, 8, 8, 16, 24, 360, 4, 48, 120, 528, 8, 20, 12, 72, 48, 28, 8, 960, 16, 120, 16, 48, 24, 36, 360, 24, 4, 40, 48, 1848, 120, 24, 528, 2208, 8, 336, 20, 16, 12, 52, 72, 120, 48, 360, 28, 3480, 8, 60, 960, 48, 32
Offset: 1

Views

Author

Keywords

Comments

a(n) is the exponent of the multiplicative group of Gaussian integers modulo n, i.e., (Z[i]/nZ[i])* = {a + b*i: a, b in Z/nZ and gcd(a^2 + b^2, n) = 1}. The number of elements in (Z[i]/nZ[i])* is A079458(n).
For n > 2, a(n) is divisible by 4. - Jianing Song, Aug 29 2018
From Jianing Song, Sep 23 2018: (Start)
Equivalent of psi (A002322) in the ring of Gaussian integers.
a(n) is the smallest positive e such that for any Gaussian integer z coprime to n we have z^e == 1 (mod n).
By definition, A079458(n)/a(n) is always an integer, and is 1 iff (Z[i]/nZ[i])* is cyclic, that is, rank((Z[i]/nZ[i])*) = A316506(n) = 0 or 1, and n has a primitive root in (Z[i]/nZ[i])*. A079458(n)/a(n) = 1 iff n = 1, 2 or a prime congruent to 3 modulo 4. (End)

Examples

			Let G = (Z[i]/4Z[i])* = {i, 3i, 1, 1 + 2i, 2 + i, 2 + 3i, 3, 3 + 2i}. The possibilities for the exponent of G are 8, 4, 2 and 1. G^4 = {x^4 mod 4 : x belongs to G} = {1} and i^2 !== 1 (mod 4). Therefore, the exponent of G is greater than 2, accordingly the exponent of G is 4 and a(4) = 4.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), this sequence ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319446.

Programs

  • Mathematica
    fa = FactorInteger;lamas[1] = 1;lamas[p_, s_]:= Which[Mod[p, 4]==3,p^(s-1)(p^2 - 1), Mod[p, 4] == 1, p^(s - 1)(p - 1), s ≥ 4, 2^(s - 1), s > 1, 4, s == 1, 2]; lamas[n_] := {aux = 1; Do[aux = LCM[aux, lamas[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length@fa[n]}]; aux}[[1]]; Table[lamas[n], {n, 100}]
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2&&e<=2, r=lcm(r,2^e));
            if(p==2&&e>=3, r=lcm(r,2^(e-1)));
            if(p%4==1, r=lcm(r,(p-1)*p^(e-1)));
            if(p%4==3, r=lcm(r,(p^2-1)*p^(e-1)));
        );
        return(r);
    } \\ Jianing Song, Aug 29 2018

Formula

a(2^e) = 2^e if e <= 2 and 2^(e-1) if e >= 3, a(p^e) = (p - 1)*p^(e-1) if p == 1 (mod 4) and (p^2 - 1)*p^(e-1) if p == 3 (mod 4). If gcd(m, n) = 1 then a(mn) = lcm(a(m), a(n)). - Jianing Song, Aug 29 2018 [See the group structure of (Z[i]/(pi^e)Z[i])* in A316506, where pi is a prime element in Z[i]. - Jianing Song, Oct 03 2022]

A318608 Moebius function mu(n) defined for the Gaussian integers.

Original entry on oeis.org

1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0
Offset: 1

Views

Author

Jianing Song, Aug 30 2018

Keywords

Comments

Just like the original Moebius function over the integers, a(n) = 0 if n has a squared Gaussian prime factor, otherwise (-1)^t if n is a product of a Gaussian unit and t distinct Gaussian prime factors.
a(n) = 0 for even n since 2 = -i*(1 + i)^2 contains a squared factor. For rational primes p == 1 (mod 4), p is always factored as (x + y*i)(x - y*i), x + y*i and x - y*i are not associated so a(p) = (-1)*(-1) = 1.
Interestingly, a(n) and A091069(n) have the same absolute value (= |A087003(n)|), since the discriminants of the quadratic fields Q[i] and Q[sqrt(2)] are -4 and 8 respectively, resulting in Q[i] and Q[sqrt(2)] being two of the three quadratic fields with discriminant a power of 2 or negated (the other one being Q[sqrt(-2)] with discriminant -8).

Examples

			a(15) = -1 because 15 is factored as 3*(2 + i)*(2 - i) with three distinct Gaussian prime factors.
a(21) = (-1)*(-1) = 1 because 21 = 3*7 where 3 and 7 are congruent to 3 mod 4 (thus being Gaussian primes).
		

Crossrefs

Absolute values are the same as those of A087003.
First row and column of A103226.
Cf. A101455.
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), this sequence ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319448.
Cf. A091069 (Moebius function over Z[sqrt(2)]).

Programs

  • Mathematica
    f[p_, e_] := If[p == 2 || e > 1, 0, Switch[Mod[p, 4], 1, 1, 3, -1]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2||e>=2, r=0);
            if(Mod(p,4)==3&e==1, r*=-1);
        );
        return(r);
    }

Formula

a(n) = 0 if n even or has a square prime factor, otherwise Product_{p divides n} (2 - (p mod 4)) where the product is taken over the primes.
Multiplicative with a(p^e) = 0 if p = 2 or e > 1, a(p) = 1 if p == 1 (mod 4) and -1 if p == 3 (mod 4).
a(n) = 0 if A078458(n) != A086275(n), otherwise (-1)^A086275(n).
a(n) = A103226(n,0) = A103226(0,n).
For squarefree n, a(n) = Kronecker symbol (-4, n) = A101455(n). Also for these n, a(n) = A091069(n) if n even or n == 1 (mod 8), otherwise -A091069(n).

A319449 Sum of the norm of divisors of n over Eisenstein integers, with associated divisors counted only once.

Original entry on oeis.org

1, 5, 13, 21, 26, 65, 64, 85, 121, 130, 122, 273, 196, 320, 338, 341, 290, 605, 400, 546, 832, 610, 530, 1105, 651, 980, 1093, 1344, 842, 1690, 1024, 1365, 1586, 1450, 1664, 2541, 1444, 2000, 2548, 2210, 1682, 4160, 1936, 2562, 3146, 2650, 2210, 4433, 3249, 3255
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Equivalent of sigma (A000203) in the ring of Eisenstein integers. Note that only norms are summed up.

Examples

			Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2, and ||d|| denote the norm of d.
a(3) = ||1|| + ||1 + w|| + ||3|| = 1 + 3 + 9 = 13.
a(7) = ||1|| + ||2 + w|| + ||2 + w'|| + ||7|| = 1 + 7 + 7 + 49 = 64.
		

Crossrefs

Cf. A001157.
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): A319442 ("d", A000005), this sequence ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A317797.

Programs

  • Mathematica
    f[p_, e_] := If[p == 3 , DivisorSigma[1, 3^(2*e)], Switch[Mod[p, 3], 1, DivisorSigma[1, p^e]^2, 2, DivisorSigma[2, p^e]]]; eisSigma[1] = 1; eisSigma[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisSigma, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==3, r*=((3^(2*e+1)-1)/2));
            if(Mod(p, 3)==1, r*=((p^(e+1)-1)/(p-1))^2);
            if(Mod(p, 3)==2, r*=(p^(2*e+2)-1)/(p^2-1));
        );
        return(r);
    }

Formula

Multiplicative with a(3^e) = sigma(3^(2e)) = (3^(2e+1) - 1)/2, a(p^e) = sigma(p^e)^2 = ((p^(e+1) - 1)/(p - 1))^2 if p == 1 (mod 3) and sigma_2(p^e) = A001157(p^e) = (p^(2e+2) - 1)/(p^2 - 1) if p == 2 (mod 3).

A332736 Numbers k such that the sum of the norm of divisors of k in Gaussian integers is divisible by k.

Original entry on oeis.org

1, 14, 15, 30, 60, 70, 120, 210, 315, 350, 630, 1260, 1612, 1680, 1860, 2520, 4095, 4588, 5080, 5250, 5535, 8190, 10850, 11070, 11284, 15240, 16380, 17520, 22140, 24180, 32760, 34125, 38745, 39060, 40880, 42000, 42720, 43216, 44280, 45720, 54243, 56420, 59644
Offset: 1

Views

Author

Amiram Eldar, Feb 21 2020

Keywords

Examples

			14 is a term since A317797(14) = 350 is divisible by 14.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], Divisible[Plus @@ (Abs[Divisors[#, GaussianIntegers -> True]]^2), #] &]

A353151 A Gaussian integer analog of the sum-of-divisors function (see Comments lines for definition).

Original entry on oeis.org

1, 5, 4, 13, 10, 20, 8, 25, 13, 50, 12, 52, 20, 40, 40, 41, 26, 65, 20, 130, 32, 60, 24, 100, 61, 100, 40, 104, 40, 200, 32, 65, 48, 130, 80, 169, 50, 100, 80, 250, 52, 160, 44, 156, 130, 120, 48, 164, 57, 305, 104, 260, 68, 200, 120, 200, 80, 200, 60, 520, 74, 160
Offset: 1

Views

Author

Allan C. Wechsler, Apr 26 2022

Keywords

Comments

Definition: Multiplicative over the Gaussian integers. Factorize n into Gaussian prime factors whose imaginary part does not exceed their real part. Then, for each distinct Gaussian prime power factor p^k, calculate (1 + p + ... + p^k) = (p^(k+1) - 1) / (p - 1) ; multiply all these Gaussian prime power contributions to get a(n).
It is not clear if this is the same as Spira's complex sum-of-divisors function; see A102506.
This is a Gaussian sum of divisors function, in that it is a sum of one associate of each Gaussian divisor of n; it's just not clear that we choose the same associate as Spira does in all cases.
If m and n are relatively prime real integers, then they are relatively prime Gaussian integers, so this function is also multiplicative in the usual sense, over the real integers.
Note that under this sum-of-divisors function, 5 is analogically perfect, and 10 is analogically multiperfect with index 5, because a(5) = 10, and a(10) = 50.

Examples

			2 = (1+i)(1-i), so a(2) = (2+i)(2-i) = 5.
3 is already a Gaussian prime, so a(3) = 1 + 3 = 4.
4 = (1+i)^2 (1-i)^2, so a(4) = (1 + (1+i) + (1+i)^2) (1 + (1-i) + (1-i)^2)
  = (2+3i)(2-3i) = 13.
12 = 2^2 * 3, so by real multiplicativity (see comments), a(12) = 13 * 4 = 52.
		

Crossrefs

Analogic multiperfect numbers under a similar interpretation of sum of complex divisors: A102506, A102507.

Formula

Factorize n over the Gaussian integers into the form Product (p(i)^e(i)), where Re(p(i)) >= Im(p(i)). Then a(n) = Product (p(i)^(e(i)+1) - 1)/(p(i) - 1). (This has no imaginary part since it is a product of conjugate pairs.)

Extensions

More terms from David A. Corneth, Apr 27 2022
Showing 1-9 of 9 results.