cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A239611 a(n) = Sum_{0 < x,y <= n and gcd(x^2 + y^2, n)=1} gcd(x^2 + y^2 - 1, n).

Original entry on oeis.org

1, 4, 16, 32, 32, 64, 96, 192, 216, 128, 240, 512, 288, 384, 512, 1024, 512, 864, 720, 1024, 1536, 960, 1056, 3072, 1200, 1152, 2592, 3072, 1568, 2048, 1920, 5120, 3840, 2048, 3072, 6912, 2592, 2880, 4608, 6144, 3200, 6144, 3696, 7680, 6912, 4224, 4416
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative by the Chinese remainder theorem since gcd(x, m*n) = gcd(x, m)*gcd(x, n) for gcd(m, n) = 1. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    g2[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}]; Array[g2,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, if (gcd(x^2+y^2,n) == 1, s += gcd(x^2+y^2-1,n)););); s;} \\ Michel Marcus, Jun 29 2014

A239612 a(n) = Sum_{0 < x,y,z <= n and gcd(x^2 + y^2 + z^2, n)=1} gcd(x^2 + y^2 + z^2 - 1, n).

Original entry on oeis.org

1, 8, 30, 112, 220, 240, 546, 1280, 1134, 1760, 2310, 3360, 4212, 4368, 6600, 13312, 9520, 9072, 12654, 24640, 16380, 18480, 22770, 38400, 42500, 33696, 39366, 61152, 47908, 52800, 56730, 131072, 69300, 76160, 120120, 127008, 99900, 101232, 126360, 281600
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.

Crossrefs

Programs

  • Mathematica
    g3[n_] := Sum[If[GCD[x^2 + y^2 + z^2, n] == 1, GCD[x^2 + y^2 + z^2 - 1, n], 0],{x, 1, n},{y, 1, n},{z,1,n}]; Array[g3,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, for (z=1, n, if (gcd(x^2+y^2+z^2,n) == 1, s += gcd(x^2+y^2+z^2-1,n));););); s;} \\ Michel Marcus, Jun 29 2014
    
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^3)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))} \\ Andrew Howroyd, Aug 07 2018

Extensions

Keyword:mult added by Andrew Howroyd, Aug 07 2018

A239613 a(n) = Sum_{0 < x,y,z,t <= n and gcd(x^2 + y^2 + z^2 + t^2, n)=1} gcd(x^2 + y^2 + z^2 + t^2 - 1, n).

Original entry on oeis.org

1, 16, 96, 384, 960, 1536, 4032, 8192, 11664, 15360, 26400, 36864, 52416, 64512, 92160, 163840, 156672, 186624, 246240, 368640, 387072, 422400, 534336, 786432, 900000, 838656, 1259712, 1548288, 1364160, 1474560, 1785600, 3145728
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.

Crossrefs

Programs

  • Mathematica
    g4[n_] := Sum[If[GCD[x^2 + y^2+ z^2+ t^2, n] == 1, GCD[x^2 + y^2+ z^2+ t^2 - 1, n], 0], {x, 1, n}, {y, 1, n},{z,1,n},{t,1,n}]; Array[g4,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, for (z=1, n, for (t=1, n, if (gcd(x^2+y^2+z^2+t^2,n) == 1, s += gcd(x^2+y^2+z^2+t^2-1,n)););););); s;} \\ Michel Marcus, Jun 29 2014
    
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^4)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))} \\ Andrew Howroyd, Aug 07 2018

Extensions

Keyword:mult added by Andrew Howroyd, Aug 07 2018

A239615 a(n) = n * A239612(n) / A053191(n).

Original entry on oeis.org

1, 4, 5, 14, 11, 20, 13, 40, 21, 44, 21, 70, 27, 52, 55, 104, 35, 84, 37, 154, 65, 84, 45, 200, 85, 108, 81, 182, 59, 220, 61, 256, 105, 140, 143, 294, 75, 148, 135, 440, 83, 260, 85, 294, 231, 180, 93, 520, 133, 340, 175, 378, 107, 324, 231, 520, 185, 236
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative because both A239612 and A053191 are. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Boole[GCD[x^2 + y^2 + z^2, n] == 1] GCD[x^2 + y^2 + z^2 - 1, n], {x, 1, n}, {y, 1, n}, {z, 1, n}]/(n EulerPhi[n]);
    Array[a, 60] (* Jean-François Alcover, Nov 22 2018 *)
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^3)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))/(n * eulerphi(n))} \\ Andrew Howroyd, Aug 07 2018
Showing 1-4 of 4 results.