cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A082953 a(n) = A000252(n) / A070732(n).

Original entry on oeis.org

1, 2, 4, 8, 16, 8, 36, 32, 36, 32, 100, 32, 144, 72, 64, 128, 256, 72, 324, 128, 144, 200, 484, 128, 400, 288, 324, 288, 784, 128, 900, 512, 400, 512, 576, 288, 1296, 648, 576, 512, 1600, 288, 1764, 800, 576, 968, 2116
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), May 26 2003

Keywords

Comments

From Jianing Song, Apr 20 2019: (Start)
a(n) is the number of split complex numbers z = x + yj in a reduced system modulo n where x, y are integers, j^2 = 1; number of solutions to gcd(x^2 - y^2, n)=1 with x, y in [0, n-1].
a(n) is the number of invertible elements in the ring Z_n[x]/(x^2 - 1) with discriminant d = 4, where Z_n is the ring of integers modulo n. (End)

Crossrefs

Similar sequences: A127473 (size of (Z_n[x]/(x^2 - x))*, d = 1), A002618 ((Z_n[x]/(x^2))*, d = 0), A079458 ((Z_n[x]/(x^2 + 1))*, d = -4), A319445 ((Z_n[x]/(x^2 - x + 1))* or (Z_n[x]/(x^2 + x + 1))*, d = -3).

Programs

  • Maple
    A082953 := proc(n) numtheory[phi](n)*numtheory[phi](2*n) ; end proc:
    seq(A082953(n),n=1..100) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    Array[Times @@ Map[EulerPhi, {#, 2 #}] &, 47] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    a(n) = eulerphi(n)*eulerphi(2*n); \\ Michel Marcus, Jun 04 2025

Formula

a(n) = phi(n)*phi(2*n) = A000010(n)*A062570(n). - Vladeta Jovovic, May 02 2005
Multiplicative with a(2^e) = 2^(2e-1) and a(p^e) = (p-1)^2*p^(2e-2) for p > 2. - R. J. Mathar, Apr 14 2011
a(n) = phi(n)^2 if n odd; 2*phi(n)^2 if n even, where phi(n) = A000010(n). - Jianing Song, Apr 20 2019
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/5) * Product_{p prime} (1 - (2*p-1)/p^3) = (2/5) * A065464 = 0.171299... . - Amiram Eldar, Oct 30 2022
a(n) = gcd(n,2)*phi(n)^2 = A040001(n)*A127473(n). - Ridouane Oudra, Jun 04 2025

A066514 Number of subgroups of the group GL(2,Z_n) of invertible 2 X 2 matrices mod n (sequence A000252).

Original entry on oeis.org

1, 6, 55, 234, 466, 758, 1704, 24587, 6656, 6718, 6428, 114210, 17158, 26180, 135869, 701426, 33277, 126920, 52320, 1341656, 469872, 87924, 48976, 50257306, 140918, 291060, 348528, 3952920, 175438, 3685062, 285952, 12024029, 1657948, 567994, 4624192, 15262640, 539046, 838096
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Jan 04 2002

Keywords

Crossrefs

Cf. A000252.

Programs

  • GAP
    c := CyclicGroup(n); aut := AutomorphismGroup(DirectProduct(c,c)); lat := LatticeSubgroups(aut);
    
  • Magma
    [&+[s`length : s in Subgroups(GL(2,ResidueClassRing(n)))] : n in [2..10]]; // Robin Visser, Aug 09 2023

Extensions

a(7)-a(11) from Andrew Howroyd, Jul 02 2018
More terms from Robin Visser, Aug 09 2023

A066541 Number of normal subgroups of the group GL(2,Z_n) of invertible 2 X 2 matrices mod n (sequence A000252).

Original entry on oeis.org

1, 3, 5, 12, 6, 17, 8, 46, 14, 22, 8, 82, 12, 28, 38, 112, 10, 48, 12, 116, 48, 28, 8, 386, 18, 44, 27, 140, 12, 162, 16, 232, 48, 38, 64, 234, 18, 42, 76, 596, 16, 196, 16, 140, 108, 28, 8, 1022, 24, 66, 66, 232, 12, 93, 64, 680, 72, 44, 8, 1032, 24, 56, 204
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Jan 07 2002

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([2..20], n->Size(NormalSubgroups(GL(2, Integers mod n))))); # Andrew Howroyd, Jul 04 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jul 04 2018

A065430 Order of commutator subgroup of GL(2,Z_n) (invertible 2 X 2 matrices mod n: A000252).

Original entry on oeis.org

1, 3, 24, 24, 120, 72, 336, 192, 648, 360, 1320, 576, 2184, 1008, 2880, 1536, 4896, 1944, 6840, 2880, 8064, 3960, 12144, 4608, 15000, 6552, 17496, 8064, 24360, 8640, 29760, 12288, 31680, 14688, 40320, 15552, 50616, 20520, 52416, 23040, 68880
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 16 2001

Keywords

Comments

This sequence may be multiplicative. - Mitch Harris, Apr 19 2005
Multiplicative because A000056 is. - Max Alekseyev

Crossrefs

Programs

  • Mathematica
    Table[n DivisorSum[n, #^2 MoebiusMu[n/#] &]/(1 + Boole[EvenQ@ n]), {n, 41}] (* Michael De Vlieger, Mar 17 2018, after Harvey P. Dale at A000056 *)
    f[p_, e_] := (p^2 - 1)*p^(3*e-2); f[2, e_] := 3*2^(3*e-3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 *)
  • PARI
    sl(n) = n * sumdiv(n, d, d^2 * moebius(n / d));
    a(n) = if (n%2, sl(n), sl(n)/2); \\ Michel Marcus, Mar 16 2018

Formula

For odd n: a(n) = A000056(n) i.e. the commutator subgroup is SL(2, Z_n);
for even n: a(n) = A000056(n) / 2 (it has index 2 in SL(2, Z_n)).
From Amiram Eldar, Nov 30 2022: (Start)
Multiplicative with a(2^e) = 3*2^(3*e-3), and a(p^e) = (p^2-1)*p^(3*e-2) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^4, where c = 11/(56*zeta(3)) = 0.1634103... . (End)

Extensions

More terms from Max Alekseyev, Jan 22 2010

A065558 Let G_n be the group of invertible 2 X 2 matrices mod n (sequence A000252). a(n) is the maximal degree of an irreducible representation of G_n.

Original entry on oeis.org

1, 2, 4, 6, 6, 8, 8, 12, 12, 12, 12, 24, 14, 16, 24, 24, 18, 24, 20, 36, 32, 24, 24, 48
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 29 2001

Keywords

Comments

a(n) is multiplicative and for an odd prime p : a(p) = p + 1 . The number of irreducible representations of G_n is in sequence A062354.
Conjecture: a(2n) = 2*A001615(n). - Ralf Stephan, Mar 26 2004

Crossrefs

A068516 Number of squares (of another matrix) in the group GL(2,Z_n) described in sequence A000252.

Original entry on oeis.org

3, 16, 16, 162, 48, 696, 104, 1236, 486, 4680, 256, 9366, 2088, 2592, 1342, 28296, 3708, 44640, 2592, 11136, 14040, 97416, 1664, 100410, 28098, 99936, 11136, 250110, 7776, 327840, 20924, 74880, 84888, 112752, 19776, 671346, 133920, 149856, 16848
Offset: 2

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Mar 19 2002

Keywords

Comments

The sequence is multiplicative. This is the 2-dimensional analog of A046073.

Crossrefs

Extensions

Terms a(21) and beyond from Andrey Zabolotskiy, Jul 02 2022

A069256 Size of the Sylow 2-subgroup of the group GL_2(Z_n): maximal power of 2 that divides A000252(n).

Original entry on oeis.org

1, 2, 16, 32, 32, 32, 32, 512, 16, 64, 16, 512, 32, 64, 512, 8192, 512, 32, 16, 1024, 512, 32, 32, 8192, 32, 64, 16, 1024, 32, 1024, 128, 131072, 256, 1024, 1024, 512, 32, 32, 512, 16384, 128, 1024, 16, 512, 512, 64, 64, 131072, 32, 64, 8192, 1024, 32, 32, 512
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Apr 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^IntegerExponent[(p-1)*(p^2-1), 2]; f[2, e_] := 2^(4*e-3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 02 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1 << (4*f[i, 2]-3), 1 << valuation((f[i, 1]-1)*(f[i, 1]^2-1), 2)));} \\ Amiram Eldar, Nov 03 2023

Formula

Multiplicative with a(2^e) = 2^(4*e-3) and a(p^e) = power of 2 in prime factorization of (p - 1)*(p^2-1) for an odd prime p. - Vladeta Jovovic, Apr 17 2002

Extensions

More terms from Vladeta Jovovic, Apr 17 2002

A082965 a(n) = A000252(n) / A065558(n).

Original entry on oeis.org

1, 3, 12, 16, 80, 36, 252, 128, 324, 240, 1100, 192, 1872, 756, 960, 1024, 4352, 972, 6156, 1280, 3024, 3300, 11132, 1536
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), May 27 2003

Keywords

Crossrefs

A062354 a(n) = sigma(n)*phi(n).

Original entry on oeis.org

1, 3, 8, 14, 24, 24, 48, 60, 78, 72, 120, 112, 168, 144, 192, 248, 288, 234, 360, 336, 384, 360, 528, 480, 620, 504, 720, 672, 840, 576, 960, 1008, 960, 864, 1152, 1092, 1368, 1080, 1344, 1440, 1680, 1152, 1848, 1680, 1872, 1584, 2208, 1984, 2394, 1860
Offset: 1

Views

Author

Jason Earls, Jul 06 2001

Keywords

Comments

Let G_n be the group of invertible 2 X 2 matrices mod n (sequence A000252). a(n) is the number of conjugacy classes in G_n. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 13 2001
a(n) = Sum_{d|n} phi(n*d). - Vladeta Jovovic, Apr 17 2002
Apparently the Mobius transform of A062952. - R. J. Mathar, Oct 01 2011

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, Prob. 7.2 12, p. 141.

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n] DivisorSigma[1, n], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    a(n)=sigma(n)*eulerphi(n); vector(150,n,a(n))

Formula

Multiplicative with a(p^e) = p^(e-1)*(p^(e+1)-1). - Vladeta Jovovic, Apr 17 2002
Dirichlet g.f.: zeta(s-1)*zeta(s-2)*product_{primes p} (1-p^(1-s)-p^(-s)+p^(2-2s)). - R. J. Mathar, Oct 01 2011, corrected by Vaclav Kotesovec, Dec 17 2019
6/Pi^2 < a(n)/n^2 < 1 for n > 1. - Jonathan Sondow, Mar 06 2014
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^3 / 18, where c = A330523 = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.535896... - Vaclav Kotesovec, Dec 17 2019
Sum_{n>=1} 1/a(n) = 1.7865764... (A093827). - Amiram Eldar, Aug 20 2020
a(n)/n^2 > 8/Pi^2 for odd n. - M. F. Hasler, Jul 08 2025

A053191 a(n) = n^2 * phi(n).

Original entry on oeis.org

1, 4, 18, 32, 100, 72, 294, 256, 486, 400, 1210, 576, 2028, 1176, 1800, 2048, 4624, 1944, 6498, 3200, 5292, 4840, 11638, 4608, 12500, 8112, 13122, 9408, 23548, 7200, 28830, 16384, 21780, 18496, 29400, 15552, 49284, 25992, 36504, 25600, 67240
Offset: 1

Views

Author

Labos Elemer, Mar 02 2000

Keywords

Comments

Number of invertible 2 X 2 symmetric matrices over Z(n). - T. D. Noe, Jan 13 2006
Note that A115077 gives the number of 2 X 2 symmetric matrices having nonzero determinant. However, for composite n, a nonzero determinant is not sufficient for the matrix to be invertible; the determinant must also be relatively prime to n. - T. D. Noe, Jan 13 2006
Also Euler phi function of n^3.
For n^k, EulerPhi(n^k) = n^(k-1)*EulerPhi(n). The same holds if Phi is replaced by the cototient function.
Also, the sum of the degrees of the irreducible representations of the group GL(2,Z_n) (sequence A000252). - Sharon Sela (sharonsela(AT)hotmail.com), Feb 06 2002

Examples

			n=5: n^3 = 125, EulerPhi(125) = 125 - 25 = 100.
		

Crossrefs

Cf. A000252 (number of invertible 2 X 2 matrices over Z(n)), A115075, A115076, A115077.

Programs

  • Magma
    [ n^2*EulerPhi(n) : n in [1..100] ]; // Vincenzo Librandi, Apr 21 2011
    
  • Maple
    with(numtheory):a:=n->phi(n^3): seq(a(n), n=1..41); # Zerinvary Lajos, Oct 07 2007
  • Mathematica
    Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]>0 && MatrixQ[Inverse[m, Modulus->n]], cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 2, 50}] (* T. D. Noe, Jan 13 2006 *)
    Table[n^2*EulerPhi[n],{n,1,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2009 *)
  • PARI
    a(n) = n^2*eulerphi(n); \\ Michel Marcus, Oct 31 2017
  • Sage
    [n^2*euler_phi(n) for n in range(1, 42)] # Zerinvary Lajos, Jun 06 2009
    

Formula

a(n) = n^2 * phi(n) = A000010(n^3).
Dirichlet g.f.: zeta(s-3)/zeta(s-2). - R. J. Mathar, Feb 09 2011
The n-th term of the Dirichlet inverse is n^2 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega = A001221. - Álvar Ibeas, Nov 24 2017
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^4 - p^3 - p + 1)) = 1.38097852211302096879... - Amiram Eldar, Dec 06 2020

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 05 2007
Showing 1-10 of 32 results. Next