cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A306724 Least number k > 1 such that A062354(k) is an n-th power, where A062354 is the product of sigma (A000203) and phi (A000010).

Original entry on oeis.org

2, 14, 3, 170, 3570, 592922491, 17194752239, 498892319051, 14467877252479, 421652049419104, 12227909433154016, 377536703748630244, 926952707565364023467, 1485824943636552705389704010031591742370238670767627108613, 18031470774665264926975299618474551942701594055200456829621877, 219559123426400144842876467461078524942414020727022446946702813568
Offset: 1

Views

Author

Amiram Eldar, Mar 06 2019

Keywords

Comments

10^70 < a(17) <= 842075173279428103504117746722346581987825143261978794674517195307859044272000. - Max Alekseyev, Oct 07 2023

Examples

			A062354(14) = 12^2;
A062354(3) = 2^3;
A062354(170) = 12^4;
A062354(3570) = 24^5;
A062354(592922491) = 840^6;
A062354(17194752239) = 840^7.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k=2}, While[!IntegerQ[Surd[DivisorSigma[1, k]*EulerPhi[k], n]], k++]; k]; Array[a, 1, 5]
  • PARI
    a(n) = {my(k=2); while (!ispower(sigma(k)*eulerphi(k), n), k++); k;} \\ Michel Marcus, Mar 06 2019

Extensions

a(8) from Giovanni Resta, Mar 06 2019
a(9)-a(13) from Daniel Suteu confirmed, a(14)-a(16) added by Max Alekseyev, Oct 06 2023

A014574 Average of twin prime pairs.

Original entry on oeis.org

4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, 312, 348, 420, 432, 462, 522, 570, 600, 618, 642, 660, 810, 822, 828, 858, 882, 1020, 1032, 1050, 1062, 1092, 1152, 1230, 1278, 1290, 1302, 1320, 1428, 1452, 1482, 1488, 1608
Offset: 1

Views

Author

Keywords

Comments

With an initial 1 added, this is the complement of the closure of {2} under a*b+1 and a*b-1. - Franklin T. Adams-Watters, Jan 11 2006
Also the square root of the product of twin prime pairs + 1. Two consecutive odd numbers can be written as 2k+1,2k+3. Then (2k+1)(2k+3)+1 = 4(k^2+2k+1) = 4(k+1)^2, a perfect square. Since twin prime pairs are two consecutive odd numbers, the statement is true for all twin prime pairs. - Cino Hilliard, May 03 2006
Or, single (or isolated) composites. Nonprimes k such that neither k-1 nor k+1 is nonprime. - Juri-Stepan Gerasimov, Aug 11 2009
Numbers n such that sigma(n-1) = phi(n+1). - Farideh Firoozbakht, Jul 04 2010
Aside from the first term in the sequence, all remaining terms have digital root 3, 6, or 9. - J. W. Helkenberg, Jul 24 2013
Numbers n such that n^2-1 is a semiprime. - Thomas Ordowski, Sep 24 2015
Every term but the first is a multiple of 6. - Harvey P. Dale, Mar 31 2023

References

  • Archimedeans Problems Drive, Eureka, 30 (1967).

Crossrefs

A068507 is the intersection of A002182 and this sequence.

Programs

  • GAP
    a:=1+Filtered([1..2000],p->IsPrime(p) and IsPrime(p+2)); # Muniru A Asiru, May 20 2018
  • Haskell
    a014574 n = a014574_list !! (n-1)
    a014574_list = [x | x <- [2,4..], a010051 (x-1) == 1, a010051 (x+1) == 1]
    -- Reinhard Zumkeller, Apr 11 2012
    
  • Maple
    P := select(isprime,[$1..1609]): map(p->p+1,select(p->member(p+2,P),P)); # Peter Luschny, Mar 03 2011
    A014574 := proc(n) option remember; local p ; if n = 1 then 4 ; else p := nextprime( procname(n-1) ) ; while not isprime(p+2) do p := nextprime(p) ; od ; return p+1 ; end if ; end proc: # R. J. Mathar, Jun 11 2011
  • Mathematica
    Select[Table[Prime[n] + 1, {n, 260}], PrimeQ[ # + 1] &] (* Ray Chandler, Oct 12 2005 *)
    Mean/@Select[Partition[Prime[Range[300]],2,1],Last[#]-First[#]==2&] (* Harvey P. Dale, Jan 16 2014 *)
  • Maxima
    A014574(n) := block(
        if n = 1 then
            return(4),
        p : A014574(n-1) ,
        for k : 2 step 2 do (
            if primep(p+k-1) and primep(p+k+1) then
                return(p+k)
        )
    )$ /* R. J. Mathar, Mar 15 2012 */
    
  • PARI
    p=2;forprime(q=3,1e4,if(q-p==2,print1(p+1", "));p=q) \\ Charles R Greathouse IV, Jun 10 2011
    

Formula

a(n) = (A001359(n) + A006512(n))/2 = 2*A040040(n) = A054735(n)/2 = A111046(n)/4.
a(n) = A129297(n+4). - Reinhard Zumkeller, Apr 09 2007
A010051(a(n) - 1) * A010051(a(n) + 1) = 1. Reinhard Zumkeller, Apr 11 2012
a(n) = 6*A002822(n-1), n>=2. - Ivan N. Ianakiev, Aug 19 2013
a(n)^4 - 4*a(n)^2 = A062354(a(n)^2 - 1). - Raphie Frank, Oct 17 2013

Extensions

Offset changed to 1 by R. J. Mathar, Jun 11 2011

A065465 Decimal expansion of Product_{p prime} (1 - 1/(p^2*(p+1))).

Original entry on oeis.org

8, 8, 1, 5, 1, 3, 8, 3, 9, 7, 2, 5, 1, 7, 0, 7, 7, 6, 9, 2, 8, 3, 9, 1, 8, 2, 2, 9, 0, 3, 2, 2, 7, 8, 4, 7, 1, 2, 9, 8, 6, 9, 2, 5, 7, 2, 0, 8, 0, 7, 6, 7, 3, 3, 6, 7, 0, 1, 6, 8, 5, 3, 5, 5, 4, 8, 6, 5, 7, 9, 0, 6, 3, 7, 9, 4, 1, 6, 9, 7, 4, 1, 0, 2, 2, 0, 4, 5, 5, 1, 7, 9, 7, 0, 2, 0, 9, 6
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

From Richard R. Forberg, May 22 2023: (Start)
This constant is the asymptotic mean of (phi(n)/n)*(sigma(n)/n), where phi is the Euler totient function (A000010) and sigma is the sum-of-divisors function (A000203).
In contrast, the product of the separate means, mean(phi(n)/n) * mean(sigma(n)/n), converges to 1, with the asymptotic mean(sigma(n)/n) = Pi^2/6 = zeta(2). See A013661.
Also see A062354. (End)

Examples

			0.88151383972517077692839182290...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 98; terms = 1000; LR = Join[{0, 0, 0}, LinearRecurrence[{-2, -1, 1, 1}, {-3, 4, -5, 3}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*PrimeZetaP[n-1]/(n-1), {n, 4, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2*(p+1))) \\ Amiram Eldar, Mar 14 2021

Formula

Sum_{n>=1} phi(n)/(n*J(n)) = (this constant)*A013661 with phi()=A000010() and J() = A007434() [Cohen, Corollary 5.1.1]. - R. J. Mathar, Apr 11 2011

A062355 a(n) = d(n) * phi(n), where d(n) is the number of divisors function.

Original entry on oeis.org

1, 2, 4, 6, 8, 8, 12, 16, 18, 16, 20, 24, 24, 24, 32, 40, 32, 36, 36, 48, 48, 40, 44, 64, 60, 48, 72, 72, 56, 64, 60, 96, 80, 64, 96, 108, 72, 72, 96, 128, 80, 96, 84, 120, 144, 88, 92, 160, 126, 120, 128, 144, 104, 144, 160, 192, 144, 112, 116, 192, 120, 120, 216, 224
Offset: 1

Views

Author

Jason Earls, Jul 06 2001

Keywords

Comments

a(n) = sum of gcd(k-1,n) for 1 <= k <= n and gcd(k,n)=1 (Menon's identity).
For n = 2^(4*k^2 - 1), k >= 1, the terms of the sequence are square and for n = 2^((3*k + 2)^3 - 1), k >= 1, the terms of the sequence are cubes. - Marius A. Burtea, Nov 14 2019
Sum_{k>=1} 1/a(k) diverges. - Vaclav Kotesovec, Sep 20 2020

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, Prob. 7.2 12, p. 141.
  • P. K. Menon, On the sum gcd(a-1,n) [(a,n)=1], J. Indian Math. Soc. (N.S.), 29 (1965), 155-163.
  • József Sándor, On Dedekind's arithmetical function, Seminarul de teoria structurilor (in Romanian), No. 51, Univ. Timișoara, 1988, pp. 1-15. See p. 11.
  • József Sándor, Some diophantine equations for particular arithmetic functions (in Romanian), Seminarul de teoria structurilor, No. 53, Univ. Timișoara, 1989, pp. 1-10. See p. 8.

Crossrefs

Cf. A003557, A173557, A061468, A062816, A079535, A062949 (inverse Mobius transform), A304408, A318519, A327169 (number of times n occurs in this sequence).

Programs

  • Magma
    [NumberOfDivisors(n)*EulerPhi(n):n in [1..65]]; // Marius A. Burtea, Nov 14 2019
  • Maple
    seq(tau(n)*phi(n), n=1..64); # Zerinvary Lajos, Jan 22 2007
  • Mathematica
    Table[EulerPhi[n] DivisorSigma[0, n], {n, 80}] (* Carl Najafi, Aug 16 2011 *)
    f[p_, e_] := (e+1)*(p-1)*p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=numdiv(n)*eulerphi(n); vector(150,n,a(n))
    
  • PARI
    { for (n=1, 1000, write("b062355.txt", n, " ", numdiv(n)*eulerphi(n)) ) } \\ Harry J. Smith, Aug 05 2009
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X^2)/(1 - p*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 15 2020
    

Formula

Dirichlet convolution of A047994 and A000010. - R. J. Mathar, Apr 15 2011
a(n) = A000005(n)*A000010(n). Multiplicative with a(p^e) = (e+1)*(p-1)*p^(e-1). - R. J. Mathar, Jun 23 2018
a(n) = A173557(n) * A318519(n) = A003557(n) * A304408(n). - Antti Karttunen, Sep 16 2018 & Sep 20 2019
From Vaclav Kotesovec, Jun 15 2020: (Start)
Let f(s) = Product_{primes p} (1 - 2*p^(-s) + p^(1-2*s)).
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ n^2 * (f(2)*(log(n)/2 + gamma - 1/4) + f'(2)/2), where f(2) = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.42824950567709444...,
f'(2) = 2 * A065464 * A335707 = f(2) * Sum_{primes p} 2*log(p) / (p^2 + p - 1) = 0.35866545223424232469545420783620795... and gamma is the Euler-Mascheroni constant A001620. (End)
From Amiram Eldar, Mar 02 2021: (Start)
a(n) >= n (Sivaramakrishnan, 1967).
a(n) >= sigma(n), for odd n (Sándor, 1988).
a(n) >= phi(n) + n - 1 (Sándor, 1989) (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} uphi(gcd(n,k)), where uphi(n) = A047994(n).
a(n) = Sum_{k=1..n} uphi(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

A064840 a(n) = tau(n)*sigma(n).

Original entry on oeis.org

1, 6, 8, 21, 12, 48, 16, 60, 39, 72, 24, 168, 28, 96, 96, 155, 36, 234, 40, 252, 128, 144, 48, 480, 93, 168, 160, 336, 60, 576, 64, 378, 192, 216, 192, 819, 76, 240, 224, 720, 84, 768, 88, 504, 468, 288, 96, 1240, 171, 558, 288, 588, 108, 960, 288, 960, 320, 360
Offset: 1

Views

Author

Vladeta Jovovic, Oct 25 2001

Keywords

Comments

Dirichlet convolution of A034761 with (the Dirichlet inverse of A037213). - R. J. Mathar, Feb 11 2011

Examples

			For n = 10, a(10) = sigma(10) * tau(10) = 18 * 4 = 72. - _Indranil Ghosh_, Jan 20 2017
		

Crossrefs

Programs

  • Magma
    [ NumberOfDivisors(n)*SumOfDivisors(n) : n in [1..40]];
    
  • Maple
    with(numtheory): seq(sigma(n)*tau(n), n=1..58) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Table[ DivisorSigma[0, n] * DivisorSigma[1, n], {n, 1, 58}] (* Jean-François Alcover, Mar 26 2013 *)
  • PARI
    { for (n=1, 1000, a=numdiv(n)*sigma(n); write("b064840.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)*(e+1)/(p-1). a(n) = (1/2)*Sum_{i|n, j|n} (i+j).
Dirichlet g.f. (zeta(s)*zeta(s-1))^2/zeta(2s-1). - R. J. Mathar, Feb 11 2011
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / (144*Zeta(3)) * (2*log(n) - 1 + 4*gamma - 4*Zeta'(3)/Zeta(3) + 24*Zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 31 2019

A330523 Decimal expansion of Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4).

Original entry on oeis.org

5, 3, 5, 8, 9, 6, 1, 5, 3, 8, 2, 8, 3, 3, 7, 9, 9, 9, 8, 0, 8, 5, 0, 2, 6, 3, 1, 3, 1, 8, 5, 4, 5, 9, 5, 0, 6, 4, 8, 2, 2, 2, 3, 7, 4, 5, 1, 4, 1, 4, 5, 2, 7, 1, 1, 5, 1, 0, 1, 0, 8, 3, 4, 6, 1, 3, 3, 2, 8, 8, 1, 1, 9, 6, 1, 4, 5, 4, 1, 1, 0, 4, 5, 1, 1, 4, 4, 6, 5, 8, 2, 7, 3, 1, 0, 0, 2, 3, 4, 4, 0, 5, 3, 5, 1, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 17 2019

Keywords

Examples

			0.5358961538283379998085026313185459506482223745141452711510108346133288119...
		

Crossrefs

Programs

  • Mathematica
    Do[Print[N[Exp[-Sum[q = Expand[(p^2 + p^3 - p^4)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}]], 50]], {t, 10, 100, 10}]
  • PARI
    (6/Pi^2) * prodeulerrat(1 - 1/(p^2*(p+1))) \\ Amiram Eldar, Sep 08 2020

Formula

Equals (6/Pi^2) * A065465. - Amiram Eldar, Sep 08 2020

A062952 Multiplicative with a(p^e) = (p^(2*e+2)-p^(e+1)-p^e+p)/(p^2-1).

Original entry on oeis.org

1, 4, 9, 18, 25, 36, 49, 78, 87, 100, 121, 162, 169, 196, 225, 326, 289, 348, 361, 450, 441, 484, 529, 702, 645, 676, 807, 882, 841, 900, 961, 1334, 1089, 1156, 1225, 1566, 1369, 1444, 1521, 1950, 1681, 1764, 1849, 2178, 2175, 2116, 2209, 2934, 2443, 2580
Offset: 1

Views

Author

Vladeta Jovovic, Jul 21 2001

Keywords

Comments

If k is squarefree (cf. A005117) then A062952(k) = k^2. - Benoit Cloitre, Apr 16 2002
Inverse Möbius transform of A062354(n). - Wesley Ivan Hurt, Jul 26 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*e+2)-p^(e+1)-p^e+p)/(p^2-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 50] (* Amiram Eldar, Jul 31 2019 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = Sum_{d|n} phi(d)*sigma(d).
a(n) = Sum_{k=1..n} sigma(n/gcd(n, k)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A183699 * A330523 / 3. - Amiram Eldar, Oct 30 2022

A011775 Numbers k such that k divides phi(k) * sigma(k).

Original entry on oeis.org

1, 6, 18, 24, 28, 40, 54, 72, 84, 96, 117, 120, 135, 162, 196, 200, 216, 224, 234, 252, 270, 288, 360, 384, 468, 486, 496, 540, 588, 600, 640, 648, 672, 756, 775, 819, 864, 891, 936, 1000, 1080, 1152, 1350, 1372, 1458, 1488, 1521, 1536, 1550, 1568, 1638, 1701, 1764
Offset: 1

Views

Author

Keywords

Comments

Comments from Farideh Firoozbakht, Dec 01 2005: (Start)
I. All numbers of the form 2^(4m-1)*5^n where m & n are natural numbers are in the sequence. Because if s=2^(4m-1)*5^n then phi(s)=2^(4m-2)*4*5^(n-1); sigma(s)=(2^(4m)-1)*(5^(n+1)-1)/4 so phi(s)*sigma(s)=6*((16^m-1)/15)*((5^(n+1)-1)/4)*(2^(4m-1)*5^n)= 6*((16^m-1)/15)*((5^(n+1)-1)/4)*s, note that (16^m-1)/15 and (5^(n+1)-1)/4 are integers, hence s divides phi(s)*sigma(s).
II. All numbers of the form 2^(2m-1)*3^n where m & n are natural numbers (A228104) are in the sequence. Because if s=2^(2m-1)*3^n then phi(s)=2^(2m-2)*2*3^(n-1); sigma(s)=(2^(2m)-1)*(3^(n+1)-1)/2 so phi(s)*sigma(s)=((3^(n+1)-1)/2)*((4^m-1)/3)*(2^(2m-1)*3^n) =((3^(n+1)-1)/2)*((4^m-1)/3)*s, note that (3^(n+1)-1)/2 and (4^m-1)/3 are integers, hence s divides phi(s)*sigma(s).
So this sequence is infinite. Also it is obvious that perfect numbers (A000396) and multiply-perfect numbers(A007691) are subsequences of this sequence. (End)

Crossrefs

Programs

Extensions

Corrected and extended by David W. Wilson

A065299 Numbers k such that sigma(k)*phi(k) is squarefree.

Original entry on oeis.org

1, 2, 4, 9, 121, 242, 529, 1058, 2209, 3481, 4418, 5041, 6889, 6962, 10082, 11449, 13778, 17161, 22898, 27889, 32041, 34322, 51529, 55778, 57121, 64082, 96721, 103058, 114242, 120409, 128881, 146689, 175561, 185761, 193442, 196249, 218089
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			All solutions are either squares or twice squares. Proper subset of A055008 or A028982. Several squares (of primes) and 2*squares are not here. E.g., 242 is here because phi(242) = 110, sigma(242) = 399, 2*5*11*3*7*19 is squarefree; 18 is not here, since 2*3*3*13 is not squarefree.
		

Crossrefs

Programs

  • Mathematica
    a[x_] := Abs[MoebiusMu[DivisorSigma[1, x]*EulerPhi[x]]] Do[s=as[n]; If[Equal[s, 1], Print[{n, Sqrt[n]}]], {n, 1, 1000000}]
    Select[Range[250000],SquareFreeQ[DivisorSigma[1,#]*EulerPhi[#]]&] (* Harvey P. Dale, Jul 15 2015 *)
  • PARI
    n=0; for (m = 1, 10^9, s=abs(moebius(sigma(m)*eulerphi(m))); if (s==1, write("b065299.txt", n++, " ", m); if (n==500, return))) \\ Harry J. Smith, Oct 15 2009
    
  • PARI
    is(f)=my(n=#f~, v=List()); for(i=1,n, if(f[i,1]>2, listput(v,f[i,1]-1)); if(f[i,2]>2, return(0), f[i,2]>1, listput(v,f[i,1])); listput(v, (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1))); for(i=2,#v, for(j=1,i-1, if(gcd(v[i],v[j])>1, return(0)))); for(i=1,#v, if(!issquarefree(v[i]), return(0))); 1
    sq(f)=f[,2]*=2; f
    double(f)=if(#f~ && f[1,1]==2, f[1,2]++, f=concat([2,1],f)); f
    list(lim)=my(v=List()); forsquarefree(n=1,sqrtint(lim\1), if(is(sq(n[2])), listput(v,n[1]^2))); forsquarefree(n=1,sqrtint(lim\2), if(is(double(sq(n[2]))), listput(v,2*n[1]^2))); Set(v) \\ Charles R Greathouse IV, Feb 05 2018

Formula

Solutions to abs(A008683(A000203(x)*A000010(x))) = 1.

A069249 a(n) = n^2 - phi(n)*sigma(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 12, 1, 4, 3, 28, 1, 32, 1, 52, 33, 8, 1, 90, 1, 64, 57, 124, 1, 96, 5, 172, 9, 112, 1, 324, 1, 16, 129, 292, 73, 204, 1, 364, 177, 160, 1, 612, 1, 256, 153, 532, 1, 320, 7, 640, 297, 352, 1, 756, 145, 256, 369, 844, 1, 912, 1, 964, 225, 32, 193, 1476, 1, 592
Offset: 1

Views

Author

Benoit Cloitre, Apr 13 2002

Keywords

Comments

Always >0 for n>0. a(n)=1 if n is prime.
If p is a prime and k is a natural number then a(p^k)=p^(k-1) because a(p^k)=(p^k)^2-sigma(p^k)*phi(p^k) =p^(2k)-(p-1)*p^(k-1)*(p^(k+1)-1)/(p-1)=p^(k-1). If n is a composite number then a(n)>1 and a(1)=0, so n is prime iff a(n)=1. - Farideh Firoozbakht, Nov 15 2005

Examples

			sigma(10) = 18; phi(10) = 4; 10^2 - sigma(10)*phi(10) = 28. sigma(p) = p+1; phi(p) = p-1; p^2 - (p+1)(p-1) = 1. [From _Walter Nissen_, Aug 29 2009]
		

Crossrefs

Programs

Formula

a(n) = n^2-A062354(n). - R. J. Mathar, Oct 01 2011
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 1 - A065465 = 0.118486... . - Amiram Eldar, Dec 04 2023
Showing 1-10 of 43 results. Next