cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A062354 a(n) = sigma(n)*phi(n).

Original entry on oeis.org

1, 3, 8, 14, 24, 24, 48, 60, 78, 72, 120, 112, 168, 144, 192, 248, 288, 234, 360, 336, 384, 360, 528, 480, 620, 504, 720, 672, 840, 576, 960, 1008, 960, 864, 1152, 1092, 1368, 1080, 1344, 1440, 1680, 1152, 1848, 1680, 1872, 1584, 2208, 1984, 2394, 1860
Offset: 1

Views

Author

Jason Earls, Jul 06 2001

Keywords

Comments

Let G_n be the group of invertible 2 X 2 matrices mod n (sequence A000252). a(n) is the number of conjugacy classes in G_n. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 13 2001
a(n) = Sum_{d|n} phi(n*d). - Vladeta Jovovic, Apr 17 2002
Apparently the Mobius transform of A062952. - R. J. Mathar, Oct 01 2011

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, Prob. 7.2 12, p. 141.

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n] DivisorSigma[1, n], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    a(n)=sigma(n)*eulerphi(n); vector(150,n,a(n))

Formula

Multiplicative with a(p^e) = p^(e-1)*(p^(e+1)-1). - Vladeta Jovovic, Apr 17 2002
Dirichlet g.f.: zeta(s-1)*zeta(s-2)*product_{primes p} (1-p^(1-s)-p^(-s)+p^(2-2s)). - R. J. Mathar, Oct 01 2011, corrected by Vaclav Kotesovec, Dec 17 2019
6/Pi^2 < a(n)/n^2 < 1 for n > 1. - Jonathan Sondow, Mar 06 2014
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^3 / 18, where c = A330523 = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.535896... - Vaclav Kotesovec, Dec 17 2019
Sum_{n>=1} 1/a(n) = 1.7865764... (A093827). - Amiram Eldar, Aug 20 2020
a(n)/n^2 > 8/Pi^2 for odd n. - M. F. Hasler, Jul 08 2025

A064840 a(n) = tau(n)*sigma(n).

Original entry on oeis.org

1, 6, 8, 21, 12, 48, 16, 60, 39, 72, 24, 168, 28, 96, 96, 155, 36, 234, 40, 252, 128, 144, 48, 480, 93, 168, 160, 336, 60, 576, 64, 378, 192, 216, 192, 819, 76, 240, 224, 720, 84, 768, 88, 504, 468, 288, 96, 1240, 171, 558, 288, 588, 108, 960, 288, 960, 320, 360
Offset: 1

Views

Author

Vladeta Jovovic, Oct 25 2001

Keywords

Comments

Dirichlet convolution of A034761 with (the Dirichlet inverse of A037213). - R. J. Mathar, Feb 11 2011

Examples

			For n = 10, a(10) = sigma(10) * tau(10) = 18 * 4 = 72. - _Indranil Ghosh_, Jan 20 2017
		

Crossrefs

Programs

  • Magma
    [ NumberOfDivisors(n)*SumOfDivisors(n) : n in [1..40]];
    
  • Maple
    with(numtheory): seq(sigma(n)*tau(n), n=1..58) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Table[ DivisorSigma[0, n] * DivisorSigma[1, n], {n, 1, 58}] (* Jean-François Alcover, Mar 26 2013 *)
  • PARI
    { for (n=1, 1000, a=numdiv(n)*sigma(n); write("b064840.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)*(e+1)/(p-1). a(n) = (1/2)*Sum_{i|n, j|n} (i+j).
Dirichlet g.f. (zeta(s)*zeta(s-1))^2/zeta(2s-1). - R. J. Mathar, Feb 11 2011
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / (144*Zeta(3)) * (2*log(n) - 1 + 4*gamma - 4*Zeta'(3)/Zeta(3) + 24*Zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 31 2019

A062949 Multiplicative with a(p^e) = ((e+1)*p^(e+1)-(e+2)*p^e+1)/(p-1).

Original entry on oeis.org

1, 3, 5, 9, 9, 15, 13, 25, 23, 27, 21, 45, 25, 39, 45, 65, 33, 69, 37, 81, 65, 63, 45, 125, 69, 75, 95, 117, 57, 135, 61, 161, 105, 99, 117, 207, 73, 111, 125, 225, 81, 195, 85, 189, 207, 135, 93, 325, 139, 207, 165, 225, 105, 285, 189, 325, 185, 171, 117, 405
Offset: 1

Views

Author

Vladeta Jovovic, Jul 21 2001

Keywords

Comments

Inverse Mobius transform of A062355.

Crossrefs

Programs

  • Maple
    A062949 := proc(n) add(numtheory[phi](d)*numtheory[tau](d), d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Feb 09 2011
  • Mathematica
    f[p_, e_] := ((e+1)*p^(e+1)-(e+2)*p^e+1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 60] (* Amiram Eldar, Jul 31 2019 *)

Formula

a(n) = Sum_{d|n} phi(d)*tau(d).
a(n) = Sum_{k=1..n} tau(n/gcd(n, k)).
a(n) = Sum_{d|n} d*uphi(n/d), where uphi() = A047994(). - Vladeta Jovovic, Mar 16 2004

A304408 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)*(k_j + 1)).

Original entry on oeis.org

1, 2, 4, 3, 8, 8, 12, 4, 6, 16, 20, 12, 24, 24, 32, 5, 32, 12, 36, 24, 48, 40, 44, 16, 12, 48, 8, 36, 56, 64, 60, 6, 80, 64, 96, 18, 72, 72, 96, 32, 80, 96, 84, 60, 48, 88, 92, 20, 18, 24, 128, 72, 104, 16, 160, 48, 144, 112, 116, 96, 120, 120, 72, 7, 192, 160, 132, 96, 176, 192
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(20) = a(2^2*5) = (2 - 1)*(2 + 1) * (5 - 1)*(1 + 1) = 24.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul((i[1]-1)*(i[2]+1), i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 05 2021
  • Mathematica
    a[n_] := Times @@ ((#[[1]] - 1) (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 70}]
    Table[DivisorSigma[0, n] EulerPhi[Last[Select[Divisors[n], SquareFreeQ]]], {n, 70}]
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); (p-1)*(e+1))} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A000005(n)*abs(A023900(n)) = A000005(n)*A173557(n) = A000005(n)*A000010(A007947(n)).
a(p^k) = (p - 1)*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*phi(n) if n is a squarefree (A005117), where omega() = A001221 and phi() = A000010.

A327169 Number of distinct k such that A000005(k)*A000010(k) is equal to n.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2019

Keywords

Comments

a(n) tells how many times in total n occurs in A062355.

Crossrefs

Programs

  • PARI
    A327169(n) = sum(k=1,n,(eulerphi(k)*numdiv(k))==n);
    
  • PARI
    f(d, m) = my(v = invphi(d)); sum(i = 1, #v, numdiv(v[i]) == m); \\ using Max Alekseyev's invphi.gp
    a(n) = sumdiv(n, d, f(d, n/d)); \\ Amiram Eldar, Feb 01 2025

Formula

a(n) = Sum_{k=1..n} [A000005(k)*A000010(k) == n], where [ ] is the Iverson bracket.

A335707 Decimal expansion of Sum_{primes p} log(p) / (p^2 + p - 1).

Original entry on oeis.org

4, 1, 8, 7, 5, 7, 5, 7, 8, 7, 9, 4, 1, 2, 5, 4, 8, 0, 5, 3, 4, 4, 2, 1, 2, 5, 6, 0, 2, 8, 7, 0, 4, 6, 3, 6, 1, 3, 6, 5, 5, 5, 1, 6, 5, 4, 4, 9, 2, 8, 7, 0, 2, 9, 4, 0, 5, 2, 2, 0, 0, 2, 8, 0, 3, 7, 7, 5, 4, 9, 6, 9, 2, 5, 9, 5, 2, 8, 9, 0, 8, 0, 2, 1, 4, 8, 0, 6, 7, 2, 8, 4, 7, 7, 8, 5, 1, 1, 8, 8, 8, 5, 9, 4, 0, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 18 2020

Keywords

Examples

			0.41875757879412548053442125602870463613655516544928702940522...
		

Crossrefs

Programs

  • Mathematica
    ratfun = 1 / (p^2 + p - 1); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 100]], {m, 2000, 20000, 2000}]

A079535 a(n) = phi(n)*d(n) - n.

Original entry on oeis.org

0, 0, 1, 2, 3, 2, 5, 8, 9, 6, 9, 12, 11, 10, 17, 24, 15, 18, 17, 28, 27, 18, 21, 40, 35, 22, 45, 44, 27, 34, 29, 64, 47, 30, 61, 72, 35, 34, 57, 88, 39, 54, 41, 76, 99, 42, 45, 112, 77, 70, 77, 92, 51, 90, 105, 136, 87, 54, 57, 132, 59, 58, 153, 160, 127, 94, 65, 124, 107, 122, 69
Offset: 1

Views

Author

N. J. A. Sloane, Jan 23 2003

Keywords

Comments

It is known that a(n) >= 0.

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 10.

Crossrefs

Programs

  • Magma
    [EulerPhi(n)*DivisorSigma(0,n) - n: n in [1..80]]; // G. C. Greubel, Jan 14 2019
    
  • Mathematica
    Table[EulerPhi[n]*DivisorSigma[0, n] - n, {n, 1, 80}] (* G. C. Greubel, Jan 14 2019 *)
  • PARI
    vector(80, n, eulerphi(n)*sigma(n,0) - n) \\ G. C. Greubel, Jan 14 2019
    
  • Sage
    [euler_phi(n)*sigma(n, 0) - n for n in (1..80)] # G. C. Greubel, Jan 14 2019

A079536 a(n) = phi(n)*d(n) - sigma(n).

Original entry on oeis.org

0, -1, 0, -1, 2, -4, 4, 1, 5, -2, 8, -4, 10, 0, 8, 9, 14, -3, 16, 6, 16, 4, 20, 4, 29, 6, 32, 16, 26, -8, 28, 33, 32, 10, 48, 17, 34, 12, 40, 38, 38, 0, 40, 36, 66, 16, 44, 36, 69, 27, 56, 46, 50, 24, 88, 72, 64, 22, 56, 24, 58, 24, 112, 97, 108, 16, 64, 66, 80, 48, 68, 93, 70, 30, 116, 76, 144
Offset: 1

Views

Author

N. J. A. Sloane, Jan 23 2003

Keywords

Comments

It is known that a(n) >= 0 if n is odd

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 10.

Crossrefs

Programs

  • Magma
    [EulerPhi(n)*DivisorSigma(0,n) - DivisorSigma(1,n): n in [1..80]]; // G. C. Greubel, Jan 14 2019
    
  • Mathematica
    Table[EulerPhi[n]*DivisorSigma[0, n] - DivisorSigma[1, n], {n,1,80}] (* G. C. Greubel, Jan 14 2019 *)
  • PARI
    vector(80, n, eulerphi(n)*sigma(n,0) - sigma(n,1)) \\ G. C. Greubel, Jan 14 2019
    
  • Sage
    [euler_phi(n)*sigma(n, 0) - sigma(n,1) for n in (1..80)] # G. C. Greubel, Jan 14 2019

A318893 Filter sequence combining the prime signature of n (A046523) with Euler totient function (A000010).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 21, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 42, 48, 43, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 53, 70, 59, 71, 66, 72, 73, 74, 51, 75, 76, 77, 78, 79, 80, 81, 76, 82, 83, 71
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2018

Keywords

Comments

Restricted growth sequence transform of A286160.
For all i, j: a(i) = a(j) => A062355(i) = A062355(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A318893aux(n) = [eulerphi(n), A046523(n)];
    v318893 = rgs_transform(vector(up_to,n,A318893aux(n)));
    A318893(n) = v318893[n];

A327171 a(n) = phi(n) * core(n), where phi is Euler totient function, and core gives the squarefree part of n.

Original entry on oeis.org

1, 2, 6, 2, 20, 12, 42, 8, 6, 40, 110, 12, 156, 84, 120, 8, 272, 12, 342, 40, 252, 220, 506, 48, 20, 312, 54, 84, 812, 240, 930, 32, 660, 544, 840, 12, 1332, 684, 936, 160, 1640, 504, 1806, 220, 120, 1012, 2162, 48, 42, 40, 1632, 312, 2756, 108, 2200, 336, 2052, 1624, 3422, 240, 3660, 1860, 252, 32, 3120, 1320
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2019

Keywords

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 161.

Crossrefs

Cf. A082473 (gives the terms in ascending order, with duplicates removed).
Cf. also A002618, A062355.

Programs

  • Magma
    [EulerPhi(n)*Squarefree(n): n in [1..100]]; // G. C. Greubel, Jul 13 2024
    
  • Mathematica
    Array[EulerPhi[#] (Sqrt@ # /. (c_: 1) a_^(b_: 0) :> (c a^b)^2) &, 66] (* Michael De Vlieger, Sep 29 2019, after Bill Gosper at A007913 *)
  • PARI
    A327171(n) = eulerphi(n)*core(n);
    
  • PARI
    A327171(n) = { my(f=factor(n)); prod (i=1, #f~, (f[i, 1]-1)*(f[i, 1]^(-1 + f[i, 2] + (f[i, 2]%2)))); };
    
  • Python
    from sympy.ntheory.factor_ import totient, core
    def A327171(n):
        return totient(n)*core(n) # Chai Wah Wu, Sep 29 2019
    
  • SageMath
    [euler_phi(n)*squarefree_part(n) for n in range(1,101)] # G. C. Greubel, Jul 13 2024

Formula

a(n) = A000010(n) * A007913(n).
Multiplicative with a(p^k) = (p-1) * p^((k-1)+(k mod 2)).
Sum_{n>=1} 1/a(n) = (Pi^2/6) * Product_{p prime} (1 + (p+1)/(p^2*(p-1))) = 3.96555686901754604330... - Amiram Eldar, Oct 16 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/45) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.1500809164... . - Amiram Eldar, Dec 05 2022
a(n) = A000010(A053143(n)). - Amiram Eldar, Sep 15 2023
Showing 1-10 of 27 results. Next