cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A062355 a(n) = d(n) * phi(n), where d(n) is the number of divisors function.

Original entry on oeis.org

1, 2, 4, 6, 8, 8, 12, 16, 18, 16, 20, 24, 24, 24, 32, 40, 32, 36, 36, 48, 48, 40, 44, 64, 60, 48, 72, 72, 56, 64, 60, 96, 80, 64, 96, 108, 72, 72, 96, 128, 80, 96, 84, 120, 144, 88, 92, 160, 126, 120, 128, 144, 104, 144, 160, 192, 144, 112, 116, 192, 120, 120, 216, 224
Offset: 1

Views

Author

Jason Earls, Jul 06 2001

Keywords

Comments

a(n) = sum of gcd(k-1,n) for 1 <= k <= n and gcd(k,n)=1 (Menon's identity).
For n = 2^(4*k^2 - 1), k >= 1, the terms of the sequence are square and for n = 2^((3*k + 2)^3 - 1), k >= 1, the terms of the sequence are cubes. - Marius A. Burtea, Nov 14 2019
Sum_{k>=1} 1/a(k) diverges. - Vaclav Kotesovec, Sep 20 2020

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, Prob. 7.2 12, p. 141.
  • P. K. Menon, On the sum gcd(a-1,n) [(a,n)=1], J. Indian Math. Soc. (N.S.), 29 (1965), 155-163.
  • József Sándor, On Dedekind's arithmetical function, Seminarul de teoria structurilor (in Romanian), No. 51, Univ. Timișoara, 1988, pp. 1-15. See p. 11.
  • József Sándor, Some diophantine equations for particular arithmetic functions (in Romanian), Seminarul de teoria structurilor, No. 53, Univ. Timișoara, 1989, pp. 1-10. See p. 8.

Crossrefs

Cf. A003557, A173557, A061468, A062816, A079535, A062949 (inverse Mobius transform), A304408, A318519, A327169 (number of times n occurs in this sequence).

Programs

  • Magma
    [NumberOfDivisors(n)*EulerPhi(n):n in [1..65]]; // Marius A. Burtea, Nov 14 2019
  • Maple
    seq(tau(n)*phi(n), n=1..64); # Zerinvary Lajos, Jan 22 2007
  • Mathematica
    Table[EulerPhi[n] DivisorSigma[0, n], {n, 80}] (* Carl Najafi, Aug 16 2011 *)
    f[p_, e_] := (e+1)*(p-1)*p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=numdiv(n)*eulerphi(n); vector(150,n,a(n))
    
  • PARI
    { for (n=1, 1000, write("b062355.txt", n, " ", numdiv(n)*eulerphi(n)) ) } \\ Harry J. Smith, Aug 05 2009
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X^2)/(1 - p*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 15 2020
    

Formula

Dirichlet convolution of A047994 and A000010. - R. J. Mathar, Apr 15 2011
a(n) = A000005(n)*A000010(n). Multiplicative with a(p^e) = (e+1)*(p-1)*p^(e-1). - R. J. Mathar, Jun 23 2018
a(n) = A173557(n) * A318519(n) = A003557(n) * A304408(n). - Antti Karttunen, Sep 16 2018 & Sep 20 2019
From Vaclav Kotesovec, Jun 15 2020: (Start)
Let f(s) = Product_{primes p} (1 - 2*p^(-s) + p^(1-2*s)).
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ n^2 * (f(2)*(log(n)/2 + gamma - 1/4) + f'(2)/2), where f(2) = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.42824950567709444...,
f'(2) = 2 * A065464 * A335707 = f(2) * Sum_{primes p} 2*log(p) / (p^2 + p - 1) = 0.35866545223424232469545420783620795... and gamma is the Euler-Mascheroni constant A001620. (End)
From Amiram Eldar, Mar 02 2021: (Start)
a(n) >= n (Sivaramakrishnan, 1967).
a(n) >= sigma(n), for odd n (Sándor, 1988).
a(n) >= phi(n) + n - 1 (Sándor, 1989) (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} uphi(gcd(n,k)), where uphi(n) = A047994(n).
a(n) = Sum_{k=1..n} uphi(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

A327166 Number of divisors d of n for which A000005(d)*d is equal to n, where A000005(x) gives the number of divisors of x.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2019

Keywords

Comments

a(n) tells how many times in total n occurs in A038040.

Examples

			108 has the following twelve divisors: [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108]. Of these, only d=18 and d=27 are such that d*A000005(d) = 108, as 18*6 = 27*4 = 108. Thus a(108) = 2.
		

Crossrefs

Cf. also A327153, A327169.

Programs

  • Mathematica
    Table[Sum[If[d*DivisorSigma[0, d] == n, 1, 0], {d, Divisors[n]}], {n, 1, 120}] (* Vaclav Kotesovec, Jul 23 2022 *)
  • PARI
    A327166(n) = sumdiv(n,d,(d*numdiv(d))==n);

Formula

a(n) = Sum_{d|n} [A000005(d)*d == n], where [ ] is the Iverson bracket.

A327170 Number of divisors d of n such that A327171(d) (= phi(d)*core(d)) is equal to n.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2019

Keywords

Comments

From any solution (*) to A327171(d) = d*phi(d) = n, we obtain a solution for core(d')*phi(d') = n by forming a "pumped up" version d' of d, by replacing each exponent e_i in the prime factorization of d = p_1^e_1 * p_2^e_2 * ... * p_k^e_k, with exponent 2*e_i - 1 so that d' = p_1^(2*e_1 - 1) * p_2^(2*e_2 - 1)* ... * p_k^(2*e_k - 1) = A102631(d) = d*A003557(d), and this d' is also a divisor of n, as n = d' * A173557(d). Generally, any product m = p_1^(2*e_1 - x) * p_2^(2*e_2 - y)* ... * p_k^(2*e_k - z), where each x, y, ..., z is either 0 or 1 gives a solution for core(m)*phi(m) = n, thus every nonzero term in this sequence is a power of 2, even though not all such m's might be divisors of n.
(* by necessity unique, see Franz Vrabec's Dec 12 2012 comment in A002618).
On the other hand, if we have any solution d for core(d)*phi(d) = n, we can find the unique such divisor e of d that e*phi(e) = n by setting e = A019554(d).
Thus, it follows that the nonzero terms in this sequence occur exactly at positions given by A082473.
Records (1, 2, 4, 8, 16, ...) occur at n = 1, 12, 504, 223200, 50097600, ...

Examples

			For n = 504 = 2^3 * 3^2 * 7, it has 24 divisors, out of which four divisors: 42 (= 2^1 * 3^1 * 7^1), 84 (= 2^2 * 3^1 * 7^1), 126 (= 2^1 * 3^2 * 7^1), 252 (= 2^2 * 3^2 * 7^1) are such that A007913(d)*A000010(d) = 504, thus a(504) = 4.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[EulerPhi[#] (Sqrt@ # /. (c_: 1) a_^(b_: 0) :> (c a^b)^2) &, 120]}, Table[DivisorSum[n, 1 &, s[[#]] == n &], {n, Length@ s}]] (* Michael De Vlieger, Sep 29 2019, after Bill Gosper at A007913 *)
  • PARI
    A327170(n) = sumdiv(n,d,eulerphi(d)*core(d) == n);

Formula

a(n) = Sum_{d|n} [A000010(d)*A007913(d) == n], where [ ] is the Iverson bracket.

A327861 Number of divisors d of n for which A003415(d)*d is equal to n, where A003415(x) gives the arithmetic derivative of x.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2019

Keywords

Comments

Number of times n occurs in A190116.

Examples

			a(4153248)=2 as out of 192 divisors of 4153248, only 1368 and 2277 are such that 1368 * A003415(1368) = 2277 * A003415(2277) = 4153248.
		

Crossrefs

Programs

  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A327861(n) = sumdiv(n,d,(d*A003415(d) == n));
Showing 1-4 of 4 results.