cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A127469 a(n) = n * A062949(n).

Original entry on oeis.org

1, 6, 15, 36, 45, 90, 91, 200, 207, 270, 231, 540, 325, 546, 675, 1040, 561, 1242, 703, 1620, 1365, 1386, 1035, 3000, 1725, 1950, 2565, 3276, 1653, 4050, 1891, 5152, 3465, 3366, 4095, 7452, 2701, 4218, 4875, 9000, 3321, 8190, 3655, 8316, 9315, 6210, 4371, 15600
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Examples

			a(5) = 45 = 5 * A062949(5) = 5 * 9.
		

Crossrefs

Cf. A062949.
Row sums of triangle A127470.

Programs

  • Maple
    A127469 := proc(n) n*A062949(n) ; end proc:
    seq(A127469(n),n=1..80) ; # R. J. Mathar, Feb 09 2011
  • Mathematica
    f[p_, e_] := ((e+1)*p^(e+1)-(e+2)*p^e+1)/(p-1); a[1] = 1; a[n_] := n * Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Aug 31 2023 *)

Formula

a(n) = n * A062949(n).
Multiplicative with a(p^e) = ((e+1)*p^(2*e+1) - (e+2)*p^(2*e) + p^e)/(p-1). - Amiram Eldar, Aug 31 2023

Extensions

More terms from Amiram Eldar, Aug 31 2023

A062355 a(n) = d(n) * phi(n), where d(n) is the number of divisors function.

Original entry on oeis.org

1, 2, 4, 6, 8, 8, 12, 16, 18, 16, 20, 24, 24, 24, 32, 40, 32, 36, 36, 48, 48, 40, 44, 64, 60, 48, 72, 72, 56, 64, 60, 96, 80, 64, 96, 108, 72, 72, 96, 128, 80, 96, 84, 120, 144, 88, 92, 160, 126, 120, 128, 144, 104, 144, 160, 192, 144, 112, 116, 192, 120, 120, 216, 224
Offset: 1

Views

Author

Jason Earls, Jul 06 2001

Keywords

Comments

a(n) = sum of gcd(k-1,n) for 1 <= k <= n and gcd(k,n)=1 (Menon's identity).
For n = 2^(4*k^2 - 1), k >= 1, the terms of the sequence are square and for n = 2^((3*k + 2)^3 - 1), k >= 1, the terms of the sequence are cubes. - Marius A. Burtea, Nov 14 2019
Sum_{k>=1} 1/a(k) diverges. - Vaclav Kotesovec, Sep 20 2020

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, Prob. 7.2 12, p. 141.
  • P. K. Menon, On the sum gcd(a-1,n) [(a,n)=1], J. Indian Math. Soc. (N.S.), 29 (1965), 155-163.
  • József Sándor, On Dedekind's arithmetical function, Seminarul de teoria structurilor (in Romanian), No. 51, Univ. Timișoara, 1988, pp. 1-15. See p. 11.
  • József Sándor, Some diophantine equations for particular arithmetic functions (in Romanian), Seminarul de teoria structurilor, No. 53, Univ. Timișoara, 1989, pp. 1-10. See p. 8.

Crossrefs

Cf. A003557, A173557, A061468, A062816, A079535, A062949 (inverse Mobius transform), A304408, A318519, A327169 (number of times n occurs in this sequence).

Programs

  • Magma
    [NumberOfDivisors(n)*EulerPhi(n):n in [1..65]]; // Marius A. Burtea, Nov 14 2019
  • Maple
    seq(tau(n)*phi(n), n=1..64); # Zerinvary Lajos, Jan 22 2007
  • Mathematica
    Table[EulerPhi[n] DivisorSigma[0, n], {n, 80}] (* Carl Najafi, Aug 16 2011 *)
    f[p_, e_] := (e+1)*(p-1)*p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=numdiv(n)*eulerphi(n); vector(150,n,a(n))
    
  • PARI
    { for (n=1, 1000, write("b062355.txt", n, " ", numdiv(n)*eulerphi(n)) ) } \\ Harry J. Smith, Aug 05 2009
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X^2)/(1 - p*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 15 2020
    

Formula

Dirichlet convolution of A047994 and A000010. - R. J. Mathar, Apr 15 2011
a(n) = A000005(n)*A000010(n). Multiplicative with a(p^e) = (e+1)*(p-1)*p^(e-1). - R. J. Mathar, Jun 23 2018
a(n) = A173557(n) * A318519(n) = A003557(n) * A304408(n). - Antti Karttunen, Sep 16 2018 & Sep 20 2019
From Vaclav Kotesovec, Jun 15 2020: (Start)
Let f(s) = Product_{primes p} (1 - 2*p^(-s) + p^(1-2*s)).
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ n^2 * (f(2)*(log(n)/2 + gamma - 1/4) + f'(2)/2), where f(2) = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.42824950567709444...,
f'(2) = 2 * A065464 * A335707 = f(2) * Sum_{primes p} 2*log(p) / (p^2 + p - 1) = 0.35866545223424232469545420783620795... and gamma is the Euler-Mascheroni constant A001620. (End)
From Amiram Eldar, Mar 02 2021: (Start)
a(n) >= n (Sivaramakrishnan, 1967).
a(n) >= sigma(n), for odd n (Sándor, 1988).
a(n) >= phi(n) + n - 1 (Sándor, 1989) (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} uphi(gcd(n,k)), where uphi(n) = A047994(n).
a(n) = Sum_{k=1..n} uphi(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

A062380 a(n) = Sum_{i|n,j|n} phi(i)*phi(j)/phi(gcd(i,j)), where phi is Euler totient function.

Original entry on oeis.org

1, 4, 7, 14, 13, 28, 19, 42, 37, 52, 31, 98, 37, 76, 91, 114, 49, 148, 55, 182, 133, 124, 67, 294, 113, 148, 163, 266, 85, 364, 91, 290, 217, 196, 247, 518, 109, 220, 259, 546, 121, 532, 127, 434, 481, 268, 139, 798, 229, 452, 343, 518, 157, 652, 403, 798, 385
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Comments

A176003 is a subsequence. - Peter Luschny, Sep 12 2012

Examples

			Let p be a prime then a(p) = phi(1)*tau(1)+phi(p)*tau(p^2) = 1+(p-1)*3 = 3*p-2. - _Peter Luschny_, Sep 12 2012
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n->  add(phi(d)*tau(d^2), d=divisors(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Sep 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] DivisorSigma[0, #^2]&]; Array[a, 60] (* Jean-François Alcover, Dec 05 2015 *)
    f[p_, e_] := ((2*e+1)*p^(e+1) - (2*e+3)*p^e + 2)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n)=sumdiv(n,i,eulerphi(i)*sumdiv(n,j,eulerphi(j)/eulerphi(gcd(i,j)))) \\ Charles R Greathouse IV, Sep 12 2012
  • Sage
    def A062380(n) :
        d = divisors(n); cp = cartesian_product([d, d])
        return reduce(lambda x,y: x+y, map(euler_phi, map(lcm, cp)))
    [A062380(n) for n in (1..57)]  # Peter Luschny, Sep 10 2012
    

Formula

a(n) = Sum_{d|n} phi(d)*tau(d^2).
Multiplicative with a(p^e) = 1 + Sum_{k=1..e} (2k+1)(p^k-p^{k-1}) = ((2e+1)p^(e+1) - (2e+3)p^e+2)/(p-1). - Mitch Harris, May 24 2005
a(n) = Sum_{c|n,d|n} phi(lcm(c,d)). - Peter Luschny, Sep 10 2012
a(n) = Sum_{k=1..n} tau( (n/gcd(k,n))^2 ). - Seiichi Manyama, May 19 2024

A372997 a(n) = Sum_{k=1..n} tau( (n/gcd(k,n))^3 ).

Original entry on oeis.org

1, 5, 9, 19, 17, 45, 25, 59, 51, 85, 41, 171, 49, 125, 153, 163, 65, 255, 73, 323, 225, 205, 89, 531, 157, 245, 231, 475, 113, 765, 121, 419, 369, 325, 425, 969, 145, 365, 441, 1003, 161, 1125, 169, 779, 867, 445, 185, 1467, 319, 785, 585, 931, 209, 1155, 697, 1475
Offset: 1

Views

Author

Seiichi Manyama, May 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (3 - (3*e+4)*p^e + (3*e+1)*p^(e+1))/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*numdiv(d^3));

Formula

If p is prime, a(p) = 4*p - 3.
a(n) = Sum_{d|n} phi(d) * tau(d^3).
Multiplicative with a(p^e) = (3 - (3*e+4)*p^e + (3*e+1)*p^(e+1))/(p-1). - Amiram Eldar, May 21 2024

A372999 a(n) = Sum_{k=1..n} tau( (n/gcd(k,n))^4 ).

Original entry on oeis.org

1, 6, 11, 24, 21, 66, 31, 76, 65, 126, 51, 264, 61, 186, 231, 212, 81, 390, 91, 504, 341, 306, 111, 836, 201, 366, 299, 744, 141, 1386, 151, 548, 561, 486, 651, 1560, 181, 546, 671, 1596, 201, 2046, 211, 1224, 1365, 666, 231, 2332, 409, 1206, 891, 1464, 261, 1794
Offset: 1

Views

Author

Seiichi Manyama, May 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (4 - (4*e+5)*p^e + (4*e+1)*p^(e+1))/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*numdiv(d^4));

Formula

If p is prime, a(p) = 5*p - 4.
a(n) = Sum_{d|n} phi(d) * tau(d^4).
Multiplicative with a(p^e) = (4 - (4*e+5)*p^e + (4*e+1)*p^(e+1))/(p-1). - Amiram Eldar, May 21 2024

A127472 Triangle T(n,k) = Sum_{j=k..n, j|n, k|j} phi(j) read by rows, 1<=k<=n.

Original entry on oeis.org

1, 2, 1, 3, 0, 2, 4, 3, 0, 2, 5, 0, 0, 0, 4, 6, 3, 4, 0, 0, 2, 7, 0, 0, 0, 0, 0, 6, 8, 7, 0, 6, 0, 0, 0, 4, 9, 0, 8, 0, 0, 0, 0, 0, 6, 10, 5, 0, 0, 8, 0, 0, 0, 0, 4, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 12, 9, 8, 6, 0, 6, 0, 0, 0, 0, 0, 4, 13
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

Defined by the matrix product A054522 * A051731.

Examples

			First few rows of the triangle are;
.1;
.2, 1;
.3, 0, 2;
.4, 3, 0, 2;
.5, 0, 0, 0, 4;
.6, 3, 4, 0, 0, 2;
.7, 0, 0, 0, 0, 0, 6;
.8, 7, 0, 6, 0, 0, 0, 4;
....
		

Crossrefs

Cf. A054522, A051731, A062949 (row sums), A000010 (diagonal n=k), A127471 (swapped matrix product).

Programs

  • Maple
    A127472 := proc(n,k)
            a := 0 ;
            for j from k to n do
                    if (n mod j = 0 ) and (j mod k =0 ) then
                            a := a+numtheory[phi](j) ;
                    end if;
            end do;
            a ;
    end proc:
    seq(seq(A127472(n,k),k=1..n),n=1..14) ; # R. J. Mathar, Nov 11 2011

Formula

T(n,k) = Sum_{j=k..n} A054522(n,j) * A051731(j,k), 1<=k<=n.

A333645 a(n) = Sum_{d|n} uphi(d).

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 7, 12, 11, 10, 11, 15, 13, 14, 15, 27, 17, 22, 19, 25, 21, 22, 23, 36, 29, 26, 37, 35, 29, 30, 31, 58, 33, 34, 35, 55, 37, 38, 39, 60, 41, 42, 43, 55, 55, 46, 47, 81, 55, 58, 51, 65, 53, 74, 55, 84, 57, 58, 59, 75, 61, 62, 77, 121, 65, 66, 67, 85, 69, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 31 2020

Keywords

Comments

Inverse Moebius transform of A047994.

Crossrefs

Programs

  • Mathematica
    uphi[1] = 1; uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[n_] := Sum[uphi[d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
    A023900[n_] := Sum[MoebiusMu[d] d, {d, Divisors[n]}]; A062949[n_] := Sum[EulerPhi[d] DivisorSigma[0, d], {d, Divisors[n]}]; a[n_] := Sum[A023900[d] A062949[n/d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
    f[p_,e_] := (p^(e+1) - e*p + e - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    uphi(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); \\ A047994
    a(n) = sumdiv(n, d, uphi(d)); \\ Michel Marcus, Mar 31 2020

Formula

G.f.: Sum_{k>=1} uphi(k) * x^k / (1 - x^k).
a(n) = Sum_{d|n} A023900(d) * A062949(n/d).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p^e) = (p^(e+1) - e*p + e - 1)/(p-1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - (2*p-1)/p^3) = A152649 * A065464 = 0.5793804872... . (End)

A341636 a(n) = Sum_{d|n} phi(d) * tau(d) * tau(n/d).

Original entry on oeis.org

1, 4, 6, 13, 10, 24, 14, 38, 29, 40, 22, 78, 26, 56, 60, 103, 34, 116, 38, 130, 84, 88, 46, 228, 79, 104, 124, 182, 58, 240, 62, 264, 132, 136, 140, 377, 74, 152, 156, 380, 82, 336, 86, 286, 290, 184, 94, 618, 153, 316, 204, 338, 106, 496, 220, 532, 228, 232, 118, 780, 122, 248
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Comments

Inverse Moebius transform of A062949.

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[0, d] DivisorSigma[0, n/d], {d, Divisors[n]}], {n, 62}]
    Table[Sum[DivisorSigma[0, GCD[n, k]] DivisorSigma[0, n/GCD[n, k]], {k, n}], {n, 62}]
    f[p_, e_] := (p + 1 + e*(p - 1) + p^(e + 1)*(e*(p - 1) + p - 3))/(p - 1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*numdiv(d)*numdiv(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} tau(gcd(n,k)) * tau(n/gcd(n,k)).
a(n) = Sum_{d|n} A062949(d).
Multiplicative with a(p^e) = (p + 1 + e*(p-1) + p^(e+1)*(e*(p-1)+p-3))/(p-1)^2. - Amiram Eldar, Sep 15 2023

A372226 a(n) = Sum_{k=1..n} sigma_2( n/gcd(k,n) ).

Original entry on oeis.org

1, 6, 21, 48, 105, 126, 301, 388, 567, 630, 1221, 1008, 2041, 1806, 2205, 3116, 4641, 3402, 6517, 5040, 6321, 7326, 11661, 8148, 13125, 12246, 15327, 14448, 23577, 13230, 28861, 24956, 25641, 27846, 31605, 27216, 49321, 39102, 42861, 40740, 67281, 37926
Offset: 1

Views

Author

Seiichi Manyama, May 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] * DivisorSigma[2, #] &]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d, 2));

Formula

a(n) = Sum_{d|n} phi(d) * sigma_2(d).
From Amiram Eldar, May 20 2024: (Start)
Multiplicative with a(p^e) = (p^(3*e+5) - p^(3*e+4) - p^(e+3) + p^e + p^4 - p^2) / ((p^2 - 1) * (p^3 - 1)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(3) * zeta(4) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.749582840863254826301... . (End)

A373002 a(n) = Sum_{k=1..n} tau( (n/gcd(k,n))^n ).

Original entry on oeis.org

1, 4, 9, 24, 25, 120, 49, 144, 135, 540, 121, 1728, 169, 1456, 2145, 800, 289, 5220, 361, 8840, 5985, 5544, 529, 21216, 1125, 9100, 1863, 25200, 841, 252000, 961, 4160, 23529, 20196, 31465, 94392, 1369, 28120, 38961, 113520, 1681, 991452, 1849, 101024, 118215
Offset: 1

Views

Author

Seiichi Manyama, May 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*numdiv(d^n));

Formula

a(n) = n * A373003(n).
If p is prime, a(p) = p^2.
a(n) = Sum_{d|n} phi(d) * tau(d^n).
Showing 1-10 of 10 results.