cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A062355 a(n) = d(n) * phi(n), where d(n) is the number of divisors function.

Original entry on oeis.org

1, 2, 4, 6, 8, 8, 12, 16, 18, 16, 20, 24, 24, 24, 32, 40, 32, 36, 36, 48, 48, 40, 44, 64, 60, 48, 72, 72, 56, 64, 60, 96, 80, 64, 96, 108, 72, 72, 96, 128, 80, 96, 84, 120, 144, 88, 92, 160, 126, 120, 128, 144, 104, 144, 160, 192, 144, 112, 116, 192, 120, 120, 216, 224
Offset: 1

Views

Author

Jason Earls, Jul 06 2001

Keywords

Comments

a(n) = sum of gcd(k-1,n) for 1 <= k <= n and gcd(k,n)=1 (Menon's identity).
For n = 2^(4*k^2 - 1), k >= 1, the terms of the sequence are square and for n = 2^((3*k + 2)^3 - 1), k >= 1, the terms of the sequence are cubes. - Marius A. Burtea, Nov 14 2019
Sum_{k>=1} 1/a(k) diverges. - Vaclav Kotesovec, Sep 20 2020

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, Prob. 7.2 12, p. 141.
  • P. K. Menon, On the sum gcd(a-1,n) [(a,n)=1], J. Indian Math. Soc. (N.S.), 29 (1965), 155-163.
  • József Sándor, On Dedekind's arithmetical function, Seminarul de teoria structurilor (in Romanian), No. 51, Univ. Timișoara, 1988, pp. 1-15. See p. 11.
  • József Sándor, Some diophantine equations for particular arithmetic functions (in Romanian), Seminarul de teoria structurilor, No. 53, Univ. Timișoara, 1989, pp. 1-10. See p. 8.

Crossrefs

Cf. A003557, A173557, A061468, A062816, A079535, A062949 (inverse Mobius transform), A304408, A318519, A327169 (number of times n occurs in this sequence).

Programs

  • Magma
    [NumberOfDivisors(n)*EulerPhi(n):n in [1..65]]; // Marius A. Burtea, Nov 14 2019
  • Maple
    seq(tau(n)*phi(n), n=1..64); # Zerinvary Lajos, Jan 22 2007
  • Mathematica
    Table[EulerPhi[n] DivisorSigma[0, n], {n, 80}] (* Carl Najafi, Aug 16 2011 *)
    f[p_, e_] := (e+1)*(p-1)*p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=numdiv(n)*eulerphi(n); vector(150,n,a(n))
    
  • PARI
    { for (n=1, 1000, write("b062355.txt", n, " ", numdiv(n)*eulerphi(n)) ) } \\ Harry J. Smith, Aug 05 2009
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X^2)/(1 - p*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 15 2020
    

Formula

Dirichlet convolution of A047994 and A000010. - R. J. Mathar, Apr 15 2011
a(n) = A000005(n)*A000010(n). Multiplicative with a(p^e) = (e+1)*(p-1)*p^(e-1). - R. J. Mathar, Jun 23 2018
a(n) = A173557(n) * A318519(n) = A003557(n) * A304408(n). - Antti Karttunen, Sep 16 2018 & Sep 20 2019
From Vaclav Kotesovec, Jun 15 2020: (Start)
Let f(s) = Product_{primes p} (1 - 2*p^(-s) + p^(1-2*s)).
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ n^2 * (f(2)*(log(n)/2 + gamma - 1/4) + f'(2)/2), where f(2) = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.42824950567709444...,
f'(2) = 2 * A065464 * A335707 = f(2) * Sum_{primes p} 2*log(p) / (p^2 + p - 1) = 0.35866545223424232469545420783620795... and gamma is the Euler-Mascheroni constant A001620. (End)
From Amiram Eldar, Mar 02 2021: (Start)
a(n) >= n (Sivaramakrishnan, 1967).
a(n) >= sigma(n), for odd n (Sándor, 1988).
a(n) >= phi(n) + n - 1 (Sándor, 1989) (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} uphi(gcd(n,k)), where uphi(n) = A047994(n).
a(n) = Sum_{k=1..n} uphi(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

A306072 Decimal expansion of 2 * Sum_{p prime}(p^2-p-1)*log(p)/(p^4+2*p^3+1).

Original entry on oeis.org

4, 0, 5, 2, 3, 7, 0, 3, 1, 4, 4, 4, 2, 2, 3, 9, 2, 5, 0, 8, 5, 9, 6, 5, 0, 9, 9, 1, 1, 2, 1, 8, 5, 2, 3, 4, 1, 0, 4, 4, 1, 4, 1, 7, 2, 4, 0, 4, 1, 9, 8, 4, 9, 2, 6, 2, 3, 4, 6, 3, 6, 2, 9, 7, 7, 5, 3, 7, 9, 8, 9, 0, 1, 8, 1, 8, 6, 4, 0, 3, 8, 0, 4, 8, 7, 4, 2, 6, 4, 6, 6, 4, 3, 9, 3, 6, 8, 4, 0, 6, 3, 7, 7, 7, 8, 4
Offset: 0

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The constant B that appears in the asymptotic formula for the sum of the bi-unitary divisor function (A306069).

Examples

			0.405237031444223925085965099112185234104414172404198492623463629775379...
		

Crossrefs

Programs

  • Mathematica
    cc = CoefficientList[Series[(p^2 - p - 1)/(p^4 + 2*p^3 + 1) /. p -> 1/x, {x, 0, 30}], x]; f = FindSequenceFunction[cc]; digits = 20; B = 2 NSum[f[n + 1 // Round]*(-PrimeZetaP'[n]), {n, 2, Infinity}, Method -> "AlternatingSigns", NSumTerms -> 10 digits, WorkingPrecision -> 5 digits]; RealDigits[B, 10, digits][[1]] (* Jean-François Alcover, Jun 19 2018 *)
    ratfun = 2*(p^2 - p - 1)/(p^4 + 2*p^3 + 1); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 100]], {m, 2000, 20000, 2000}] (* Vaclav Kotesovec, Jun 17 2020 *)

Extensions

a(1)-a(20) from Jean-François Alcover, Jun 19 2018
More digits from Vaclav Kotesovec, Jun 17 2020

A345364 Decimal expansion of Sum_{p primes} p * (log(p))^2 / (p-1)^3.

Original entry on oeis.org

2, 0, 9, 1, 4, 8, 0, 2, 8, 2, 3, 4, 8, 9, 0, 1, 8, 5, 7, 3, 3, 8, 4, 0, 3, 6, 6, 4, 8, 0, 8, 6, 0, 5, 3, 4, 0, 1, 5, 4, 6, 3, 2, 2, 6, 1, 2, 3, 2, 4, 1, 8, 4, 2, 9, 9, 4, 0, 9, 1, 3, 5, 3, 2, 2, 2, 5, 6, 7, 2, 6, 4, 5, 3, 1, 1, 3, 5, 1, 4, 3, 6, 7, 6, 2, 6, 1, 8, 5, 4, 3, 4, 4, 5, 1, 4, 6, 9, 8, 9, 8, 7, 1, 5, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 16 2021

Keywords

Examples

			2.0914802823489018573384036648086053401546322612324184299409135322256726453113...
		

Crossrefs

Programs

  • Mathematica
    ratfun = p/(p - 1)^3; zetas = 0; ratab = Table[konfun = Together[Simplify[ratfun - c*(p^power/(p^power - 1)^2)]]; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*(-Zeta'[power]^2 / Zeta[power]^2 + Zeta''[power] / Zeta[power]) /. sol; ratfun = konfun /. sol, {power, 2, 30}]; Do[Print[N[Sum[Log[p]^2*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 110]], {m, 100, 1000, 100}]

A357820 Numerators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 2, 11, 3, 11, 5, 23, 7, 23, 65, 71, 17, 64, 491, 64, 491, 173, 505, 2651, 2581, 10639, 1151, 3593, 3523, 727, 237, 2189, 2147, 11071, 10931, 5623, 2759, 5623, 16589, 2113, 8347, 162373, 159979, 20318, 160549, 163969, 649891, 7292441, 7204661, 7292441, 7204661
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Examples

			Fractions begin with 1, 2/3, 11/12, 3/4, 11/12, 5/6, 23/24, 7/8, 23/24, 65/72, 71/72, 17/18, ...
		

Crossrefs

Cf. A001615, A173290, A357821 (denominators).
Similar sequence: A211177.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[(-1)^(# + 1)*psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/psi(k)).
a(n)/A357821(n) ~ (C/5) * (log(n) + gamma + D + 24*log(2)/5) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C = Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Bordellès and Cloitre, 2013; Tóth, 2017).

A357818 Numerators of the partial sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 4, 19, 7, 23, 2, 17, 53, 55, 169, 175, 89, 641, 1303, 331, 1345, 1373, 1387, 7061, 2377, 9613, 29119, 29539, 29749, 6017, 6065, 6121, 6163, 31151, 31291, 15803, 3977, 16013, 48319, 24317, 12211, 233899, 58774, 472757, 59344, 119543, 1918673, 21249043, 21336823
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Examples

			Fractions begin with 1, 4/3, 19/12, 7/4, 23/12, 2, 17/8, 53/24, 55/24, 169/72, 175/72, 89/36, ...
		

Crossrefs

Cf. A001615, A173290, A357819 (denominators).
Similar sequences: A028415, A104528, A212717.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = numerator(sum(k=1, n, 1/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = numerator(Sum_{k=1..n} 1/psi(k)).
a(n)/A357819(n) ~ C * (log(n) + gamma + D) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C = Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Sita Ramaiah and Suryanarayana, 1979; Tóth, 2017).
Showing 1-5 of 5 results.