cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A286324 a(n) is the number of bi-unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 6, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 6, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 8, 2, 8
Offset: 1

Views

Author

Michel Marcus, May 07 2017

Keywords

Comments

a(n) is the number of terms of the n-th row of A222266.

Examples

			From _Michael De Vlieger_, May 07 2017: (Start)
a(1) = 1 since 1 is the empty product; all divisors of 1 (i.e., 1) have a greatest common unitary divisor that is 1. 1 is a unitary divisor of all numbers n.
a(p) = 2 since 1 and p have greatest common unitary divisor 1.
a(6) = 4 since the divisor pairs {1, 6} and {2, 3} have greatest common unitary divisor 1.
a(24) = 8 since {1, 24}, {2, 12}, {3, 8}, {4, 6} have greatest unitary divisors {1, {1, 3, 8, 24}}, {{1, 2}, {1, 3, 4, 12}}, {{1, 3}, {1, 8}}, {{1, 4}, {1, 2, 3, 6}}: 1 is the greatest common unitary divisor among all 4 pairs. (End)
		

Crossrefs

Cf. A222266, A188999, A293185 (indices of records), A340232, A350390.
Cf. A000005, A034444 (unitary), A037445 (infinitary).

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[DivisorSum[n, 1 &, Last@ Intersection[f@ #, f[n/#]] == 1 &], {n, 90}] (* Michael De Vlieger, May 07 2017 *)
    f[p_, e_] := If[OddQ[e], e + 1, e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 120] (* Amiram Eldar, Dec 19 2018 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    a(n) = #biudivs(n);
    
  • PARI
    a(n)={my(f=factor(n)[,2]); prod(i=1, #f, my(e=f[i]); e + e % 2)} \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (X^3 - X^2 + X + 1) / ((X-1)^2 * (X+1)))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = e + (e mod 2). - Andrew Howroyd, Aug 05 2018
a(A340232(n)) = 2*n. - Bernard Schott, Mar 12 2023
a(n) = A000005(A350390(n)) (the number of divisors of the largest exponentially odd number dividing n). - Amiram Eldar, Sep 01 2023
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Let f(s) = Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (p-1)/((p+1)*p^2)) = A306071 = 0.80733082163620503914865427993003113402584582508155664401800520770441381...,
f'(1) = f(1) * Sum_{p prime} 2*(p^2 - p - 1) * log(p) /(p^4 + 2*p^3 + 1) = f(1) * 0.40523703144422392508596509911218523410441417240419849262346362977537989... = f(1) * A306072
and gamma is the Euler-Mascheroni constant A001620. (End)

A306069 Partial sums of A286324: Sum_{k=1..n} bd(k) where bd(k) is the number of bi-unitary divisors of k.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 41, 45, 47, 51, 53, 57, 61, 65, 67, 75, 77, 81, 85, 89, 91, 99, 101, 107, 111, 115, 119, 123, 125, 129, 133, 141, 143, 151, 153, 157, 161, 165, 167, 175, 177, 181, 185, 189, 191, 199, 203, 211, 215, 219, 221
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The bi-unitary version of A006218 and A064608.

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 72.

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[Mod[e, 2] == 1, (e + 1), e]; bdivnum[n_] := If[n==1,1,Times @@ (fun @@@ FactorInteger[n])]; Accumulate@ Array[bdivnum, {60}]
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    a(n) = sum(k=1, n, #biudivs(k)); \\ Michel Marcus, Jun 20 2018

Formula

a(n) = A*n*(log(n) + 2*gamma - 1 + B) + O(n^(1/2)*exp(-A * log(n)^(3/5) * log(log(n))^(-1/5))), where gamma = A001620, A = A306071 and B = A306072.

A335705 Decimal expansion of Sum_{primes p} 2*(p-3) * log(p) / (p^3 + p - 2).

Original entry on oeis.org

7, 9, 3, 3, 9, 3, 1, 5, 9, 7, 7, 9, 8, 2, 1, 3, 6, 7, 4, 8, 1, 5, 0, 0, 5, 7, 5, 8, 9, 3, 4, 4, 4, 5, 0, 3, 1, 5, 5, 0, 1, 6, 0, 5, 8, 5, 6, 6, 1, 0, 5, 6, 1, 2, 1, 1, 2, 6, 9, 0, 8, 6, 5, 3, 9, 7, 5, 9, 9, 8, 0, 4, 8, 7, 3, 2, 2, 0, 9, 0, 7, 4, 4, 5, 1, 6, 5, 1, 2, 4, 5, 5, 0, 0, 0, 2, 9, 6, 7, 9, 3, 0, 0, 2, 1, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 18 2020

Keywords

Examples

			0.079339315977982136748150057589344450315501605856610561211269...
		

Crossrefs

Programs

  • Mathematica
    ratfun = 2*(p-3) / (p^3 + p - 2); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 100]], {m, 2000, 20000, 2000}]

A307160 Decimal expansion of the constant c in the asymptotic formula for the partial sums of the bi-unitary divisors sum function, A307159(k) ~ c*k^2.

Original entry on oeis.org

7, 5, 2, 8, 3, 8, 7, 4, 1, 0, 0, 2, 2, 9, 4, 3, 1, 1, 5, 4, 3, 3, 3, 0, 9, 5, 1, 5, 5, 3, 0, 4, 1, 2, 7, 6, 5, 1, 9, 5, 2, 5, 4, 6, 7, 5, 6, 5, 2, 2, 1, 0, 8, 5, 8, 7, 7, 9, 0, 3, 2, 8, 7, 8, 6, 8, 1, 2, 5, 2, 2, 6, 0, 5, 5, 8, 1, 4, 8, 7, 8, 4, 7, 7, 4, 1, 8, 6, 0, 4, 7, 8, 2, 5, 8, 0, 7, 0, 0, 1, 1, 9, 9, 4, 1, 3
Offset: 0

Views

Author

Amiram Eldar, Mar 27 2019

Keywords

Comments

The asymptotic mean of the bi-unitary abundancy index lim_{n->oo} (1/n) * Sum_{k=1..n} A188999(k)/k = 2*c = 1.505677... - Amiram Eldar, Jun 10 2020

Examples

			0.75283874100229431154333095155304127651952546756522...
		

References

  • D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; nm=1000; c = Rest[CoefficientList[Series[Log[1 - 2*x^3 + x^4 + x^5 - x^6],{x,0,nm}],x] * Range[0, nm]]; RealDigits[(Zeta[2]*Zeta[3]/2) * Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]

Formula

Equals (zeta(2)*zeta(3)/2)* Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6).

Extensions

More terms from Vaclav Kotesovec, May 29 2020

A345364 Decimal expansion of Sum_{p primes} p * (log(p))^2 / (p-1)^3.

Original entry on oeis.org

2, 0, 9, 1, 4, 8, 0, 2, 8, 2, 3, 4, 8, 9, 0, 1, 8, 5, 7, 3, 3, 8, 4, 0, 3, 6, 6, 4, 8, 0, 8, 6, 0, 5, 3, 4, 0, 1, 5, 4, 6, 3, 2, 2, 6, 1, 2, 3, 2, 4, 1, 8, 4, 2, 9, 9, 4, 0, 9, 1, 3, 5, 3, 2, 2, 2, 5, 6, 7, 2, 6, 4, 5, 3, 1, 1, 3, 5, 1, 4, 3, 6, 7, 6, 2, 6, 1, 8, 5, 4, 3, 4, 4, 5, 1, 4, 6, 9, 8, 9, 8, 7, 1, 5, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 16 2021

Keywords

Examples

			2.0914802823489018573384036648086053401546322612324184299409135322256726453113...
		

Crossrefs

Programs

  • Mathematica
    ratfun = p/(p - 1)^3; zetas = 0; ratab = Table[konfun = Together[Simplify[ratfun - c*(p^power/(p^power - 1)^2)]]; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*(-Zeta'[power]^2 / Zeta[power]^2 + Zeta''[power] / Zeta[power]) /. sol; ratfun = konfun /. sol, {power, 2, 30}]; Do[Print[N[Sum[Log[p]^2*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 110]], {m, 100, 1000, 100}]
Showing 1-5 of 5 results.