cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A344731 Numbers k such that k divides A306069(k).

Original entry on oeis.org

1, 275, 277, 3337, 3353, 3359, 39675, 39689, 472467, 797806459, 9501109507
Offset: 1

Views

Author

Amiram Eldar, May 27 2021

Keywords

Comments

The corresponding quotients A306069(k)/k are 1, 5, 5, 7, 7, 7, 9, 9, 11, 17, 19, ...
a(12) > 7.5*10^10, if it exists.

Examples

			a(1) = 1 since A306069(1) = 1 is divisible by 1.
a(2) = 275 since A306069(275) = 1375 = 5 * 275 is divisible by 275.
		

Crossrefs

The bi-unitary version of A050226.
Similar sequences: A064610, A344732, A344733.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[e, 2] == 1, (e + 1), e]; s[1] = 1; s[n_] := s[n] = s[n - 1] + Times @@ f @@@ FactorInteger[n]; Select[Range[40000], Divisible[s[#], #] &]

A306071 Decimal expansion of Sum_{n>=1} (-1)^omega(n) phi(n)^2/n^4, where omega(n) is the number of distinct prime factors of n (A001221) and phi is Euler's totient function (A000010).

Original entry on oeis.org

8, 0, 7, 3, 3, 0, 8, 2, 1, 6, 3, 6, 2, 0, 5, 0, 3, 9, 1, 4, 8, 6, 5, 4, 2, 7, 9, 9, 3, 0, 0, 3, 1, 1, 3, 4, 0, 2, 5, 8, 4, 5, 8, 2, 5, 0, 8, 1, 5, 5, 6, 6, 4, 4, 0, 1, 8, 0, 0, 5, 2, 0, 7, 7, 0, 4, 4, 1, 3, 8, 1, 4, 8, 4, 9, 3, 7, 5, 1, 8, 6, 4, 9, 6, 9, 5, 6, 0, 9, 3, 5, 0, 9, 6, 2, 9, 4, 8, 3, 7, 6, 5, 0, 1, 1, 8
Offset: 0

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The constant A that appears in the asymptotic formulae for the sums of the bi-unitary divisor function (A306069) and the bi-unitary totient function (A306070).
The product in Suryanarayana's 1972 paper has a error that was corrected in his 1975 paper.
The probability that 2 randomly selected numbers will be unitary coprime (i.e. their largest common unitary divisor is 1). - Amiram Eldar, Aug 27 2019

Examples

			0.80733082163620503914...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 72.

Crossrefs

Programs

  • Mathematica
    cc = CoefficientList[Series[Log[1 - (p - 1)/(p^2*(p + 1))] /. p -> 1/x, {x, 0, 36}], x]; f = FindSequenceFunction[cc]; digits = 20; A = Exp[NSum[f[n + 1 // Floor]*(PrimeZetaP[n]), {n, 2, Infinity}, NSumTerms -> 16 digits, WorkingPrecision -> 16 digits]]; RealDigits[A, 10, digits][[1]] (* Jean-François Alcover, Jun 19 2018 *)
    $MaxExtraPrecision = 1000; Do[Print[Zeta[2] * Exp[-N[Sum[q = Expand[(2*p^2 - 2*p^3 + p^4)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}], 120]]], {t, 300, 1000, 100}] (* Vaclav Kotesovec, May 29 2020 *)
  • PARI
    prodeulerrat(1 - (p-1)/(p^2 * (p+1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Product_{p prime} (1 - (p-1)/(p^2 * (p+1))).
Equals zeta(2) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 1/p^4).

Extensions

a(1)-a(20) from Jean-François Alcover, Jun 19 2018
a(20)-a(24) from Jon E. Schoenfield, May 27 2019
More terms from Vaclav Kotesovec, May 29 2020

A307159 Partial sums of the bi-unitary divisors sum function: Sum_{k=1..n} bsigma(k), where bsigma is A188999.

Original entry on oeis.org

1, 4, 8, 13, 19, 31, 39, 54, 64, 82, 94, 114, 128, 152, 176, 203, 221, 251, 271, 301, 333, 369, 393, 453, 479, 521, 561, 601, 631, 703, 735, 798, 846, 900, 948, 998, 1036, 1096, 1152, 1242, 1284, 1380, 1424, 1484, 1544, 1616, 1664, 1772, 1822, 1900, 1972, 2042
Offset: 1

Views

Author

Amiram Eldar, Mar 27 2019

Keywords

References

  • D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.

Crossrefs

Programs

  • Mathematica
    fun[p_,e_] := If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); Accumulate[Array[bsigma, 60]]

Formula

a(n) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6) (A307160).

A306072 Decimal expansion of 2 * Sum_{p prime}(p^2-p-1)*log(p)/(p^4+2*p^3+1).

Original entry on oeis.org

4, 0, 5, 2, 3, 7, 0, 3, 1, 4, 4, 4, 2, 2, 3, 9, 2, 5, 0, 8, 5, 9, 6, 5, 0, 9, 9, 1, 1, 2, 1, 8, 5, 2, 3, 4, 1, 0, 4, 4, 1, 4, 1, 7, 2, 4, 0, 4, 1, 9, 8, 4, 9, 2, 6, 2, 3, 4, 6, 3, 6, 2, 9, 7, 7, 5, 3, 7, 9, 8, 9, 0, 1, 8, 1, 8, 6, 4, 0, 3, 8, 0, 4, 8, 7, 4, 2, 6, 4, 6, 6, 4, 3, 9, 3, 6, 8, 4, 0, 6, 3, 7, 7, 7, 8, 4
Offset: 0

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The constant B that appears in the asymptotic formula for the sum of the bi-unitary divisor function (A306069).

Examples

			0.405237031444223925085965099112185234104414172404198492623463629775379...
		

Crossrefs

Programs

  • Mathematica
    cc = CoefficientList[Series[(p^2 - p - 1)/(p^4 + 2*p^3 + 1) /. p -> 1/x, {x, 0, 30}], x]; f = FindSequenceFunction[cc]; digits = 20; B = 2 NSum[f[n + 1 // Round]*(-PrimeZetaP'[n]), {n, 2, Infinity}, Method -> "AlternatingSigns", NSumTerms -> 10 digits, WorkingPrecision -> 5 digits]; RealDigits[B, 10, digits][[1]] (* Jean-François Alcover, Jun 19 2018 *)
    ratfun = 2*(p^2 - p - 1)/(p^4 + 2*p^3 + 1); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 100]], {m, 2000, 20000, 2000}] (* Vaclav Kotesovec, Jun 17 2020 *)

Extensions

a(1)-a(20) from Jean-François Alcover, Jun 19 2018
More digits from Vaclav Kotesovec, Jun 17 2020

A327573 Partial sums of the number of infinitary divisors function: a(n) = Sum_{k=1..n} id(k), where id is A037445.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 41, 43, 45, 49, 51, 55, 59, 63, 65, 73, 75, 79, 83, 87, 89, 97, 99, 103, 107, 111, 115, 119, 121, 125, 129, 137, 139, 147, 149, 153, 157, 161, 163, 167, 169, 173, 177, 181, 183, 191, 195, 203, 207, 211, 213, 221
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

Differs from A306069 at n >= 16.

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A006218 (all divisors), A064608 (unitary), A306069 (bi-unitary), A145353 (exponential).

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; id[1] = 1; id[n_] := Times @@ (f @@@ FactorInteger[n]); Accumulate[Array[id, 100]]

Formula

a(n) ~ 2 * c * n * log(n), where c = 0.366625... (A327576). [Corrected by Amiram Eldar, May 07 2021]

A344273 a(n) is the least k such that the average number of bi-unitary divisors of {1..k} is >= n.

Original entry on oeis.org

1, 6, 24, 80, 273, 960, 3336, 11480, 39648, 136952, 472416, 1630164, 5625480, 19412736, 66992016, 231184800, 797806152, 2753187210, 9501109380, 32787848746
Offset: 1

Views

Author

Amiram Eldar, May 13 2021

Keywords

Examples

			a(2) = 6 since the average number of bi-unitary divisors of {1..6} is A306069(6)/6 = 13/6 > 2.
		

Crossrefs

The unitary version of A085829.
Similar sequences: A328331, A336304, A338891, A338943, A344272, A344274.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e + 1, e]; bdivnum[1] = 1; bdivnum[n_] := Times @@ (f @@@ FactorInteger[n]); seq={}; s = 0; k = 1; Do[While[s = s + bdivnum[k]; s < k*n, k++]; AppendTo[seq, k]; k++, {n, 1, 10}]; seq

Formula

Lim_{n->oo} a(n+1)/a(n) = exp(1/A) = 3.4509501567..., where A is A306071.
Showing 1-6 of 6 results.