cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A286324 a(n) is the number of bi-unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 6, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 6, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 8, 2, 8
Offset: 1

Views

Author

Michel Marcus, May 07 2017

Keywords

Comments

a(n) is the number of terms of the n-th row of A222266.

Examples

			From _Michael De Vlieger_, May 07 2017: (Start)
a(1) = 1 since 1 is the empty product; all divisors of 1 (i.e., 1) have a greatest common unitary divisor that is 1. 1 is a unitary divisor of all numbers n.
a(p) = 2 since 1 and p have greatest common unitary divisor 1.
a(6) = 4 since the divisor pairs {1, 6} and {2, 3} have greatest common unitary divisor 1.
a(24) = 8 since {1, 24}, {2, 12}, {3, 8}, {4, 6} have greatest unitary divisors {1, {1, 3, 8, 24}}, {{1, 2}, {1, 3, 4, 12}}, {{1, 3}, {1, 8}}, {{1, 4}, {1, 2, 3, 6}}: 1 is the greatest common unitary divisor among all 4 pairs. (End)
		

Crossrefs

Cf. A222266, A188999, A293185 (indices of records), A340232, A350390.
Cf. A000005, A034444 (unitary), A037445 (infinitary).

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[DivisorSum[n, 1 &, Last@ Intersection[f@ #, f[n/#]] == 1 &], {n, 90}] (* Michael De Vlieger, May 07 2017 *)
    f[p_, e_] := If[OddQ[e], e + 1, e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 120] (* Amiram Eldar, Dec 19 2018 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    a(n) = #biudivs(n);
    
  • PARI
    a(n)={my(f=factor(n)[,2]); prod(i=1, #f, my(e=f[i]); e + e % 2)} \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (X^3 - X^2 + X + 1) / ((X-1)^2 * (X+1)))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = e + (e mod 2). - Andrew Howroyd, Aug 05 2018
a(A340232(n)) = 2*n. - Bernard Schott, Mar 12 2023
a(n) = A000005(A350390(n)) (the number of divisors of the largest exponentially odd number dividing n). - Amiram Eldar, Sep 01 2023
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Let f(s) = Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (p-1)/((p+1)*p^2)) = A306071 = 0.80733082163620503914865427993003113402584582508155664401800520770441381...,
f'(1) = f(1) * Sum_{p prime} 2*(p^2 - p - 1) * log(p) /(p^4 + 2*p^3 + 1) = f(1) * 0.40523703144422392508596509911218523410441417240419849262346362977537989... = f(1) * A306072
and gamma is the Euler-Mascheroni constant A001620. (End)

A350390 a(n) is the largest exponentially odd divisor of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 6, 13, 14, 15, 8, 17, 6, 19, 10, 21, 22, 23, 24, 5, 26, 27, 14, 29, 30, 31, 32, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 22, 15, 46, 47, 24, 7, 10, 51, 26, 53, 54, 55, 56, 57, 58, 59, 30, 61, 62, 21, 32, 65, 66, 67, 34, 69
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2021

Keywords

Comments

First differs from A331737 at n = 16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^e, p^(e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(f[i,2] - !(f[i,2]%2)));} \\ Amiram Eldar, Sep 18 2023
  • Python
    from math import prod
    from sympy.ntheory.factor_ import primefactors, core
    def A350390(n): return n*core(n)//prod(primefactors(n)) # Chai Wah Wu, Dec 30 2021
    

Formula

Multiplicative with a(p^e) = p^e if e is odd and p^(e-1) otherwise.
a(n) = n/A336643(n).
a(n) = n if and only if n is an exponentially odd number (A268335).
Sum_{k=1..n} a(k) ~ (1/2)*c*n^2, where c = Product_{p prime} 1-(p-1)/(p^2*(p+1)) = 0.8073308216... (A306071).
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) + 1/p^(2*s-1)). - Amiram Eldar, Sep 18 2023

A327837 Decimal expansion of the asymptotic mean of the number of exponential divisors function (A049419).

Original entry on oeis.org

1, 6, 0, 2, 3, 1, 7, 1, 0, 2, 3, 0, 5, 4, 1, 8, 0, 5, 2, 3, 4, 9, 6, 2, 6, 3, 1, 5, 6, 2, 1, 1, 6, 1, 0, 0, 3, 7, 7, 6, 9, 3, 9, 4, 9, 5, 7, 8, 5, 5, 7, 2, 7, 3, 7, 7, 4, 6, 5, 3, 5, 2, 8, 5, 9, 8, 7, 8, 8, 8, 8, 6, 0, 2, 1, 6, 3, 3, 5, 4, 7, 2, 7, 5, 6, 6, 7, 3, 3, 9, 0, 4, 9, 4, 8, 8, 0, 6, 4, 1, 8, 0, 7, 5, 7
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2019

Keywords

Examples

			1.602317102305418052349626315621161003776939495785572...
		

Crossrefs

Cf. A059956 (constant for unitary divisors), A306071 (bi-unitary), A327576 (infinitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1500; m = 1500; em = 500; f[x_] := 1 + Log[1 + Sum[x^e * (DivisorSigma[0, e] - DivisorSigma[0, e - 1]), {e, 2, em}]]; c = Rest[ CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m] ]; RealDigits[ Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals lim_{k->oo} A145353(k)/k.
Equals Product_{p prime} (1 + Sum_{e >= 2} p^(-e) * (d(e) - d(e-1))), where d(e) is the number of divisors of e (A000005).
Equals Product_{p prime} (1 - 1/p) * (2 - (log(p-1) + QPolyGamma(0, 1, 1/p)) / log(p)). - Vaclav Kotesovec, Feb 27 2023
From Amiram Eldar, Dec 24 2024: (Start)
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} k/uphi(k) = lim_{m->oo} (1/m) * Sum_{k=1..m} A319677(k)/A319676(k), where uphi(k) is the unitary totient function (A047994).
Equals lim_{m->oo} (1/log(m)) * Sum_{k=1..m} 1/uphi(k) = lim_{m->oo} (1/log(m)) * A379517(m)/A379518(m).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A361967(k).
Equals Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/(p^k-1))).
Equals Product_{p prime} (1 + (1-1/p) * Sum_{k>=1} 1/(p^k*(p^k-1))). (End)

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021

A306069 Partial sums of A286324: Sum_{k=1..n} bd(k) where bd(k) is the number of bi-unitary divisors of k.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 41, 45, 47, 51, 53, 57, 61, 65, 67, 75, 77, 81, 85, 89, 91, 99, 101, 107, 111, 115, 119, 123, 125, 129, 133, 141, 143, 151, 153, 157, 161, 165, 167, 175, 177, 181, 185, 189, 191, 199, 203, 211, 215, 219, 221
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The bi-unitary version of A006218 and A064608.

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 72.

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[Mod[e, 2] == 1, (e + 1), e]; bdivnum[n_] := If[n==1,1,Times @@ (fun @@@ FactorInteger[n])]; Accumulate@ Array[bdivnum, {60}]
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    a(n) = sum(k=1, n, #biudivs(k)); \\ Michel Marcus, Jun 20 2018

Formula

a(n) = A*n*(log(n) + 2*gamma - 1 + B) + O(n^(1/2)*exp(-A * log(n)^(3/5) * log(log(n))^(-1/5))), where gamma = A001620, A = A306071 and B = A306072.

A306070 Partial sums of A116550: Sum_{k=1..n} bphi(k) where bphi(k) is the bi-unitary analog of Euler's totient function.

Original entry on oeis.org

1, 2, 4, 7, 11, 14, 20, 27, 35, 41, 51, 59, 71, 80, 89, 104, 120, 132, 150, 164, 178, 193, 215, 232, 256, 274, 300, 321, 349, 364, 394, 425, 448, 472, 497, 526, 562, 589, 617, 648, 688, 709, 751, 786, 820, 853, 899, 935, 983, 1019, 1056, 1098, 1150, 1189
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The bi-unitary version of A002088 and A177754.

Crossrefs

Programs

  • Mathematica
    bphi[1] = 1; bphi[n_] := With[{pp = Power @@@ FactorInteger[n]}, Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; Accumulate[Table[bphi[n], {n, 1, 100}]] (* after Jean-François Alcover at A116550 *)
    phi[x_, n_] := DivisorSum[n, MoebiusMu[#]*Floor[x/#] &]; bphi[n_] := DivisorSum[n, (-1)^PrimeNu[#]*phi[n/#, #] &, CoprimeQ[#, n/#] &]; Accumulate[Array[bphi, 100]] (* Amiram Eldar, Jun 30 2025 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    bphi(n) = if (n==1, 1, sum(k=1, n-1, gcud(n, k) == 1));
    a(n) = sum(k=1, n, bphi(k)); \\ Michel Marcus, Jun 20 2018

Formula

a(n) = A*n^2/2 + O(n*log(n)^2), where A = A306071.

A327576 Decimal expansion of the constant that appears in the asymptotic formula for average order of the number of infinitary divisors function (A037445).

Original entry on oeis.org

3, 6, 6, 6, 2, 5, 2, 7, 6, 9, 4, 5, 3, 8, 1, 9, 0, 9, 5, 5, 6, 5, 3, 2, 7, 2, 0, 6, 8, 7, 0, 0, 1, 5, 6, 3, 0, 3, 3, 6, 1, 2, 1, 5, 5, 9, 7, 1, 0, 0, 9, 2, 7, 3, 0, 3, 7, 5, 8, 7, 5, 1, 5, 3, 0, 5, 7, 4, 7, 5, 3, 3, 4, 4, 7, 4, 9, 2, 5, 0, 7, 5, 7, 9, 0, 5, 6
Offset: 0

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Examples

			0.366625276945381909556532720687001563033612155971009...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A059956 (corresponding constant for unitary divisors), A306071 (bi-unitary).

Programs

  • Mathematica
    m = 1000; em = 10; f[x_] := Sum[Log[1 - 1/(1 + 1/x^(2^e))^2], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; $MaxExtraPrecision = 1500; RealDigits[(1/2)*Exp[f[1/2] + f[1/3]]* Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - (1/2)^k - (1/3)^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Limit_{n->oo} A327573(n)/(2 * n * log(n)). [Corrected by Amiram Eldar, May 07 2021]
Equals (1/2) * Product_{P} (1 - 1/(P+1)^2), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).

A307160 Decimal expansion of the constant c in the asymptotic formula for the partial sums of the bi-unitary divisors sum function, A307159(k) ~ c*k^2.

Original entry on oeis.org

7, 5, 2, 8, 3, 8, 7, 4, 1, 0, 0, 2, 2, 9, 4, 3, 1, 1, 5, 4, 3, 3, 3, 0, 9, 5, 1, 5, 5, 3, 0, 4, 1, 2, 7, 6, 5, 1, 9, 5, 2, 5, 4, 6, 7, 5, 6, 5, 2, 2, 1, 0, 8, 5, 8, 7, 7, 9, 0, 3, 2, 8, 7, 8, 6, 8, 1, 2, 5, 2, 2, 6, 0, 5, 5, 8, 1, 4, 8, 7, 8, 4, 7, 7, 4, 1, 8, 6, 0, 4, 7, 8, 2, 5, 8, 0, 7, 0, 0, 1, 1, 9, 9, 4, 1, 3
Offset: 0

Views

Author

Amiram Eldar, Mar 27 2019

Keywords

Comments

The asymptotic mean of the bi-unitary abundancy index lim_{n->oo} (1/n) * Sum_{k=1..n} A188999(k)/k = 2*c = 1.505677... - Amiram Eldar, Jun 10 2020

Examples

			0.75283874100229431154333095155304127651952546756522...
		

References

  • D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; nm=1000; c = Rest[CoefficientList[Series[Log[1 - 2*x^3 + x^4 + x^5 - x^6],{x,0,nm}],x] * Range[0, nm]]; RealDigits[(Zeta[2]*Zeta[3]/2) * Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]

Formula

Equals (zeta(2)*zeta(3)/2)* Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6).

Extensions

More terms from Vaclav Kotesovec, May 29 2020

A327575 Decimal expansion of the constant that appears in the asymptotic formula for average order of an infinitary analog of Euler's phi function (A091732).

Original entry on oeis.org

3, 2, 8, 9, 3, 5, 8, 3, 8, 8, 4, 0, 3, 3, 5, 5, 1, 6, 3, 5, 5, 7, 4, 8, 4, 8, 7, 3, 6, 5, 2, 2, 0, 2, 2, 9, 5, 7, 7, 0, 6, 6, 5, 2, 3, 7, 9, 4, 6, 9, 4, 0, 4, 4, 8, 0, 8, 4, 0, 3, 7, 9, 8, 7, 5, 2, 8, 1, 2, 4, 0, 0, 7, 7, 3, 7, 9, 6, 8, 7, 4, 8, 8, 3, 9, 9, 7
Offset: 0

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Examples

			0.328935838840335516355748487365220229577066523794694...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A104141 (corresponding constant for phi), A065463 (unitary), A306071 (bi-unitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1500; m = 1500; em = 10; f[x_] := Sum[Log[1 - x^(2^e)/(1 + 1/x^(2^e))], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[(1/2) * Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Limit_{k->oo} A327572(k)/k^2.
Equals (1/2) * Product_{P} (1 - 1/(P*(P+1))), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).

A344273 a(n) is the least k such that the average number of bi-unitary divisors of {1..k} is >= n.

Original entry on oeis.org

1, 6, 24, 80, 273, 960, 3336, 11480, 39648, 136952, 472416, 1630164, 5625480, 19412736, 66992016, 231184800, 797806152, 2753187210, 9501109380, 32787848746
Offset: 1

Views

Author

Amiram Eldar, May 13 2021

Keywords

Examples

			a(2) = 6 since the average number of bi-unitary divisors of {1..6} is A306069(6)/6 = 13/6 > 2.
		

Crossrefs

The unitary version of A085829.
Similar sequences: A328331, A336304, A338891, A338943, A344272, A344274.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e + 1, e]; bdivnum[1] = 1; bdivnum[n_] := Times @@ (f @@@ FactorInteger[n]); seq={}; s = 0; k = 1; Do[While[s = s + bdivnum[k]; s < k*n, k++]; AppendTo[seq, k]; k++, {n, 1, 10}]; seq

Formula

Lim_{n->oo} a(n+1)/a(n) = exp(1/A) = 3.4509501567..., where A is A306071.

A319593 Decimal expansion of the probability that an integer triple is pairwise unitary coprime.

Original entry on oeis.org

5, 5, 2, 3, 0, 6, 9, 0, 4, 1, 5, 7, 9, 4, 2, 8, 1, 1, 1, 8, 3, 2, 2, 7, 3, 4, 7, 3, 0, 9, 2, 6, 4, 7, 0, 8, 5, 3, 5, 4, 5, 5, 8, 3, 1, 4, 0, 4, 4, 9, 7, 6, 0, 7, 3, 3, 0, 2, 2, 7, 0, 0, 8, 0, 1, 5, 5, 3, 7, 3, 7, 2, 1, 4, 2, 7, 3, 8, 5, 3, 2, 0, 9, 4, 0, 6, 1
Offset: 0

Views

Author

Amiram Eldar, Aug 27 2019

Keywords

Comments

Two numbers are unitary coprime if their largest common unitary divisor is 1.

Examples

			0.552306904157942811183227347309264708535455831404497...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 54.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; nm = 1000; f[x_] := 1 - 4*x^2 + 7*x^3 - 9*x^4 + 8*x^5 - 2*x^6 - 3*x^7 + 2*x^8; c = LinearRecurrence[{-1, 3, -4, 5, -3, -1, 2}, {0, -8, 21, -68, 180, -503, 1428}, nm]; RealDigits[f[1/2] * f[1/3] * Zeta[2] * Zeta[3] * Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k - 1/3^k)/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]
  • PARI
    zeta(2) * zeta(3) * prodeulerrat(1-4/p^2+7/p^3-9/p^4+8/p^5-2/p^6-3/p^7+2/p^8) \\ Amiram Eldar, Jun 29 2023

Formula

Equals zeta(2) * zeta(3) * Product_{p prime} (1 - 4/p^2 + 7/p^3 - 9/p^4 + 8/p^5 - 2/p^6 - 3/p^7 + 2/p^8).
Showing 1-10 of 11 results. Next