cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A062354 a(n) = sigma(n)*phi(n).

Original entry on oeis.org

1, 3, 8, 14, 24, 24, 48, 60, 78, 72, 120, 112, 168, 144, 192, 248, 288, 234, 360, 336, 384, 360, 528, 480, 620, 504, 720, 672, 840, 576, 960, 1008, 960, 864, 1152, 1092, 1368, 1080, 1344, 1440, 1680, 1152, 1848, 1680, 1872, 1584, 2208, 1984, 2394, 1860
Offset: 1

Views

Author

Jason Earls, Jul 06 2001

Keywords

Comments

Let G_n be the group of invertible 2 X 2 matrices mod n (sequence A000252). a(n) is the number of conjugacy classes in G_n. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 13 2001
a(n) = Sum_{d|n} phi(n*d). - Vladeta Jovovic, Apr 17 2002
Apparently the Mobius transform of A062952. - R. J. Mathar, Oct 01 2011

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, Prob. 7.2 12, p. 141.

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n] DivisorSigma[1, n], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    a(n)=sigma(n)*eulerphi(n); vector(150,n,a(n))

Formula

Multiplicative with a(p^e) = p^(e-1)*(p^(e+1)-1). - Vladeta Jovovic, Apr 17 2002
Dirichlet g.f.: zeta(s-1)*zeta(s-2)*product_{primes p} (1-p^(1-s)-p^(-s)+p^(2-2s)). - R. J. Mathar, Oct 01 2011, corrected by Vaclav Kotesovec, Dec 17 2019
6/Pi^2 < a(n)/n^2 < 1 for n > 1. - Jonathan Sondow, Mar 06 2014
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^3 / 18, where c = A330523 = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.535896... - Vaclav Kotesovec, Dec 17 2019
Sum_{n>=1} 1/a(n) = 1.7865764... (A093827). - Amiram Eldar, Aug 20 2020
a(n)/n^2 > 8/Pi^2 for odd n. - M. F. Hasler, Jul 08 2025

A062355 a(n) = d(n) * phi(n), where d(n) is the number of divisors function.

Original entry on oeis.org

1, 2, 4, 6, 8, 8, 12, 16, 18, 16, 20, 24, 24, 24, 32, 40, 32, 36, 36, 48, 48, 40, 44, 64, 60, 48, 72, 72, 56, 64, 60, 96, 80, 64, 96, 108, 72, 72, 96, 128, 80, 96, 84, 120, 144, 88, 92, 160, 126, 120, 128, 144, 104, 144, 160, 192, 144, 112, 116, 192, 120, 120, 216, 224
Offset: 1

Views

Author

Jason Earls, Jul 06 2001

Keywords

Comments

a(n) = sum of gcd(k-1,n) for 1 <= k <= n and gcd(k,n)=1 (Menon's identity).
For n = 2^(4*k^2 - 1), k >= 1, the terms of the sequence are square and for n = 2^((3*k + 2)^3 - 1), k >= 1, the terms of the sequence are cubes. - Marius A. Burtea, Nov 14 2019
Sum_{k>=1} 1/a(k) diverges. - Vaclav Kotesovec, Sep 20 2020

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, Prob. 7.2 12, p. 141.
  • P. K. Menon, On the sum gcd(a-1,n) [(a,n)=1], J. Indian Math. Soc. (N.S.), 29 (1965), 155-163.
  • József Sándor, On Dedekind's arithmetical function, Seminarul de teoria structurilor (in Romanian), No. 51, Univ. Timișoara, 1988, pp. 1-15. See p. 11.
  • József Sándor, Some diophantine equations for particular arithmetic functions (in Romanian), Seminarul de teoria structurilor, No. 53, Univ. Timișoara, 1989, pp. 1-10. See p. 8.

Crossrefs

Cf. A003557, A173557, A061468, A062816, A079535, A062949 (inverse Mobius transform), A304408, A318519, A327169 (number of times n occurs in this sequence).

Programs

  • Magma
    [NumberOfDivisors(n)*EulerPhi(n):n in [1..65]]; // Marius A. Burtea, Nov 14 2019
  • Maple
    seq(tau(n)*phi(n), n=1..64); # Zerinvary Lajos, Jan 22 2007
  • Mathematica
    Table[EulerPhi[n] DivisorSigma[0, n], {n, 80}] (* Carl Najafi, Aug 16 2011 *)
    f[p_, e_] := (e+1)*(p-1)*p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=numdiv(n)*eulerphi(n); vector(150,n,a(n))
    
  • PARI
    { for (n=1, 1000, write("b062355.txt", n, " ", numdiv(n)*eulerphi(n)) ) } \\ Harry J. Smith, Aug 05 2009
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X^2)/(1 - p*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 15 2020
    

Formula

Dirichlet convolution of A047994 and A000010. - R. J. Mathar, Apr 15 2011
a(n) = A000005(n)*A000010(n). Multiplicative with a(p^e) = (e+1)*(p-1)*p^(e-1). - R. J. Mathar, Jun 23 2018
a(n) = A173557(n) * A318519(n) = A003557(n) * A304408(n). - Antti Karttunen, Sep 16 2018 & Sep 20 2019
From Vaclav Kotesovec, Jun 15 2020: (Start)
Let f(s) = Product_{primes p} (1 - 2*p^(-s) + p^(1-2*s)).
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ n^2 * (f(2)*(log(n)/2 + gamma - 1/4) + f'(2)/2), where f(2) = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.42824950567709444...,
f'(2) = 2 * A065464 * A335707 = f(2) * Sum_{primes p} 2*log(p) / (p^2 + p - 1) = 0.35866545223424232469545420783620795... and gamma is the Euler-Mascheroni constant A001620. (End)
From Amiram Eldar, Mar 02 2021: (Start)
a(n) >= n (Sivaramakrishnan, 1967).
a(n) >= sigma(n), for odd n (Sándor, 1988).
a(n) >= phi(n) + n - 1 (Sándor, 1989) (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} uphi(gcd(n,k)), where uphi(n) = A047994(n).
a(n) = Sum_{k=1..n} uphi(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

A009205 a(n) = gcd(d(n), sigma(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 1, 1, 2, 2, 2, 2, 4, 4, 1, 2, 3, 2, 6, 4, 4, 2, 4, 1, 2, 4, 2, 2, 8, 2, 3, 4, 2, 4, 1, 2, 4, 4, 2, 2, 8, 2, 6, 6, 4, 2, 2, 3, 3, 4, 2, 2, 8, 4, 8, 4, 2, 2, 12, 2, 4, 2, 1, 4, 8, 2, 6, 4, 8, 2, 3, 2, 2, 2, 2, 4, 8, 2, 2, 1, 2, 2, 4, 4, 4, 4, 4, 2, 6, 4, 6, 4, 4, 4, 12, 2, 3, 6, 1, 2, 8, 2, 2, 8, 2, 2, 4, 2, 8, 4, 2, 2, 8, 4, 6, 2, 4, 4, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[0,n],DivisorSigma[1,n]],{n,120}] (* Harvey P. Dale, Dec 05 2017 *)
  • PARI
    A009205(n) = gcd(numdiv(n),sigma(n)); \\ Antti Karttunen, May 22 2017
    
  • Python
    from math import prod, gcd
    from sympy import factorint
    def A009205(n):
        f = factorint(n).items()
        return gcd(prod(e+1 for p, e in f),prod((p**(e+1)-1)//(p-1) for p,e in f)) # Chai Wah Wu, Jul 27 2023

Formula

a(n) = A064840(n)/A009278(n). - Amiram Eldar, Jan 31 2025

Extensions

Data section extended to 120 terms by Antti Karttunen, May 22 2017

A064945 a(n) = Sum_{i|n, j|n, j >= i} i.

Original entry on oeis.org

1, 4, 5, 11, 7, 22, 9, 26, 18, 30, 13, 64, 15, 38, 38, 57, 19, 82, 21, 87, 48, 54, 25, 156, 38, 62, 58, 109, 31, 179, 33, 120, 68, 78, 68, 244, 39, 86, 78, 213, 43, 224, 45, 153, 143, 102, 49, 348, 66, 166, 98, 175, 55, 268, 96, 267, 108, 126, 61, 542, 63, 134, 181
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(4,3,2,1)*(1,2,3,6) = 4*1+3*2+2*3+1*6 = 22.
		

Crossrefs

Programs

  • Haskell
    a064945 = sum . zipWith (*) [1..] . reverse . a027750_row'
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Maple
    with(numtheory): seq(add((tau(n)-i+1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    A064945[n_] := #.Range[Length[#], 1, -1] & [Divisors[n]];
    Array[A064945, 100] (* Paolo Xausa, Aug 07 2025 *)
  • PARI
    a(n) = my(d=divisors(n), t=length(d)); sum(i=1, t, (t - i + 1)*d[i]); \\ Harry J. Smith, Oct 01 2009
    
  • PARI
    a(n)=my(d=divisors(n)); sum(i=1,#d,(#d+1-i)*d[i]) \\ Charles R Greathouse IV, Jun 10 2015
    
  • Python
    from sympy import divisors, divisor_sigma
    def A064945(n): return (divisor_sigma(n,0)+1)*divisor_sigma(n)-sum(a*b for a, b in enumerate(divisors(n),1)) # Chai Wah Wu, Aug 07 2025

Formula

a(n) = Sum_{i=1..tau(n)} (tau(n)-i+1)*d_i, where {d_i}, i=1..tau(n), is the increasing sequence of divisors of n.
a(n) = Sum_{i=1..A000005(n)} (A000005(n)-i+1)*A027750(n, i). - Michel Marcus, Jun 10 2015
From Ridouane Oudra, Aug 02 2025: (Start)
a(n) = Sum_{d|n} d*A135539(n,d).
a(n) = A064947(n) + A000203(n).
a(n) = (A064949(n) + A000203(n))/2.
a(n) = A064949(n) - A064947(n).
a(n) = A337360(n) - A064944(n).
a(n) = A064840(n) - A064946(n). (End)

A064944 a(n) = Sum_{i|n, j|n, j >= i} j.

Original entry on oeis.org

1, 5, 7, 17, 11, 38, 15, 49, 34, 60, 23, 132, 27, 82, 82, 129, 35, 191, 39, 207, 112, 126, 47, 384, 86, 148, 142, 283, 59, 469, 63, 321, 172, 192, 172, 666, 75, 214, 202, 597, 83, 640, 87, 435, 403, 258, 95, 1016, 162, 485, 262, 511, 107, 812, 264, 813, 292, 324
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = max(1,1)+max(1,2)+max(1,3)+max(1,6)+max(2,2)+max(2,3)+max(2,6)+max(3,3)+max(3,6)+max(6,6)=38, or a(6) = dot_product(1,2,3,4)*(1,2,3,6)=1*1+2*2+3*3+4*6=38.
		

Crossrefs

Programs

  • Haskell
    a064944 = sum . zipWith (*) [1..] . a027750_row'
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Maple
    with(numtheory): seq(add(i*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    A064944[n_] := #.Range[Length[#]] & [Divisors[n]];
    Array[A064944, 100] (* Paolo Xausa, Aug 07 2025 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=1, length(d), i*d[i]); \\ Harry J. Smith, Sep 30 2009
    
  • Python
    from sympy import divisors
    def A064944(n): return sum(a*b for a, b in enumerate(divisors(n),1)) # Chai Wah Wu, Aug 07 2025

Formula

a(n) = Sum_{i=1..tau(n)} i*d_i, where {d_i}, i=1..tau(n) is the increasing sequence of divisors of n.
a(n) = Sum_{i=1..A000005(n)} i*A027750(n, i). - Michel Marcus, Jun 10 2015
From Ridouane Oudra, Aug 01 2025: (Start)
a(n) = Sum_{d|n} (n/d)*A135539(n,d).
a(n) = A064946(n) + A000203(n).
a(n) = (A064948(n) + A000203(n))/2.
a(n) = A337360(n) - A064945(n).
a(n) = A064948(n) - A064946(n).
a(n) = A064840(n) - A064947(n). (End)

A009278 a(n) = lcm(d(n), sigma(n)).

Original entry on oeis.org

1, 6, 4, 21, 6, 12, 8, 60, 39, 36, 12, 84, 14, 24, 24, 155, 18, 78, 20, 42, 32, 36, 24, 120, 93, 84, 40, 168, 30, 72, 32, 126, 48, 108, 48, 819, 38, 60, 56, 360, 42, 96, 44, 84, 78, 72, 48, 620, 57, 186, 72, 294, 54, 120, 72, 120, 80, 180, 60, 168, 62, 96, 312, 889, 84, 144, 68
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A064840(n)/A009205(n). - Amiram Eldar, Jan 31 2025

A064949 a(n) = Sum_{i|n, j|n} min(i,j).

Original entry on oeis.org

1, 5, 6, 15, 8, 32, 10, 37, 23, 42, 14, 100, 16, 52, 52, 83, 20, 125, 22, 132, 64, 72, 26, 252, 45, 82, 76, 162, 32, 286, 34, 177, 88, 102, 88, 397, 40, 112, 100, 336, 44, 352, 46, 222, 208, 132, 50, 572, 75, 239, 124, 252, 56, 416, 120, 414, 136, 162, 62, 916, 64
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(7,5,3,1)*(1,2,3,6) = 7*1 + 5*2 + 3*3 + 1*6 = 32.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((2*tau(n)-2*i+1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    Array[Function[{t, d}, Total@ MapIndexed[#1 (2 t - 2 First[#2] + 1) &, d]] @@ {DivisorSigma[0, #], Divisors[#]} &, 61] (* Michael De Vlieger, Oct 25 2021 *)
  • PARI
    a(n) = { my(d=divisors(n), t=length(d)); sum(i=1, t, (2*t - 2*i + 1)*d[i]) } \\ Harry J. Smith, Oct 01 2009
    
  • PARI
    A064949(n) = { my(i=0, u=numdiv(n)); sumdiv(n,d,i++; (((2*u)-(2*i))+1)*d); }; \\ Antti Karttunen, Nov 14 2021

Formula

a(n) = Sum_{i=1..tau(n)} (2*tau(n)-2*i+1)*d_i, where {d_i}, i=1..tau(n), is increasing sequence of divisors of n.
a(n) = Sum_{i=1..n} A135539(n,i)^2. - Ridouane Oudra, Oct 25 2021
a(n) = A000203(n) * (2*A000005(n)+1) - 2*A064944(n). - Amiram Eldar, Jan 13 2025
From Ridouane Oudra, Aug 13 2025: (Start)
a(n) = A064945(n) + A064947(n).
a(n) = 2*A064947(n) + A000203(n).
a(n) = 2*A064945(n) - A000203(n).
a(n) = 2*A064840(n) - A064948(n). (End)

A304412 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)*(k_j + 1)).

Original entry on oeis.org

1, 6, 8, 9, 12, 48, 16, 12, 12, 72, 24, 72, 28, 96, 96, 15, 36, 72, 40, 108, 128, 144, 48, 96, 18, 168, 16, 144, 60, 576, 64, 18, 192, 216, 192, 108, 76, 240, 224, 144, 84, 768, 88, 216, 144, 288, 96, 120, 24, 108, 288, 252, 108, 96, 288, 192, 320, 360, 120, 864, 124, 384, 192, 21, 336, 1152, 136, 324
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(36) = a(2^2*3^2) = (2 + 1)*(2 + 1) * (3 + 1)*(2 + 1) = 108.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1) (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 68}]
    Table[DivisorSigma[0, n] Total[Select[Divisors[n], SquareFreeQ]], {n, 68}]
  • PARI
    a(n)={numdiv(n)*sumdiv(n, d, moebius(d)^2*d)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A000005(n)*A048250(n) = A000005(n)*A000203(A007947(n)).
a(p^k) = (p + 1)*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*Product_{p|n} (p + 1) if n is a squarefree (A005117), where omega() = A001221.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 2/p^(s-1) - 1/p^(2*s-1)). - Amiram Eldar, Sep 17 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Let f(s) = Product_{p prime} (p^s-p)^2 * (p^(2*s)+2*p^(s+1)-p) / (p^(2*s) * (p^s-1)^2).
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = A065463 = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442200999165592736603350326637210188586431417098049414226842591...,
f'(2) = f(2) * Sum_{p prime} 2*(2*p^2-1)*log(p) / ((p^2-1)*(p^2+p-1)) = f(2) * 1.799151495460164053607059266860868724519705035904425832307664926571...
and gamma is the Euler-Mascheroni constant A001620. (End)

A064946 a(n) = Sum_{i|n, j|n, j>i} j.

Original entry on oeis.org

0, 2, 3, 10, 5, 26, 7, 34, 21, 42, 11, 104, 13, 58, 58, 98, 17, 152, 19, 165, 80, 90, 23, 324, 55, 106, 102, 227, 29, 397, 31, 258, 124, 138, 124, 575, 37, 154, 146, 507, 41, 544, 43, 351, 325, 186, 47, 892, 105, 392, 190, 413, 53, 692, 192, 693, 212, 234, 59
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(0,1,2,3)*(1,2,3,6) = 0*1 + 1*2 + 2*3 + 3*6 = 26.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((i-1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    A064946[n_] := #.Range[Length[#]] & [Rest[Divisors[n]]];
    Array[A064946, 100] (* Paolo Xausa, Aug 14 2025 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=2, length(d), (i - 1)*d[i]); \\ Harry J. Smith, Oct 01 2009

Formula

a(n) = Sum_{i=1..tau(n)} (i-1)*d_i, where {d_i}, i=1..tau(n), is the increasing sequence of the divisors of n.
a(n) = A064944(n) - A000203(n). - Amiram Eldar, Dec 23 2024
From Ridouane Oudra, Aug 06 2025: (Start)
a(n) = A064948(n) - A064944(n).
a(n) = A064840(n) - A064945(n).
a(n) = A337297(n) - A064947(n).
a(n) = (A064948(n) - A000203(n))/2. (End)

A064947 a(n) = Sum_{i|n, j|n, j>i} i.

Original entry on oeis.org

0, 1, 1, 4, 1, 10, 1, 11, 5, 12, 1, 36, 1, 14, 14, 26, 1, 43, 1, 45, 16, 18, 1, 96, 7, 20, 18, 53, 1, 107, 1, 57, 20, 24, 20, 153, 1, 26, 22, 123, 1, 128, 1, 69, 65, 30, 1, 224, 9, 73, 26, 77, 1, 148, 24, 147, 28, 36, 1, 374, 1, 38, 77, 120, 26, 168, 1, 93, 32, 165, 1, 411, 1, 44
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Comments

For given n, iterate a(n); a(a(n)); a(a(a(n))); ... Does this iterative process always lead to a(a(...(a(n))...)) = 1? - Ctibor O. Zizka, Apr 17 2008
No. For example, a(4) = 4, a(14) = 14, and a(99) = 99. - Jason Yuen, Jan 07 2025

Examples

			a(6) = dot_product(3,2,1,0)*(1,2,3,6) = 3*1 + 2*2 + 1*3 + 0*6 = 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((tau(n)-i)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    Table[t = DivisorSigma[0, n]; Total@ MapIndexed[(t - First[#2])*#1 &, Divisors[n]], {n, 120}] (* Michael De Vlieger, Jan 07 2025 *)
  • PARI
    a(n) = my(d=divisors(n), t=length(d)); sum(i=1, t - 1, (t - i)*d[i]); \\ Harry J. Smith, Oct 01 2009

Formula

a(n) = Sum_{i=1..tau(n)} (tau(n)-i)*d_i, where {d_i}, i=1..tau(n), is increasing sequence of divisors of n.
From Ridouane Oudra, Aug 07 2025: (Start)
a(n) = A064945(n) - A000203(n).
a(n) = A064840(n) - A064944(n).
a(n) = A064949(n) - A064945(n).
a(n) = A337297(n) - A064946(n).
a(n) = (A064949(n) - A000203(n))/2. (End)
Showing 1-10 of 25 results. Next