cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A386911 Numbers k such that A064945(k) = A064945(k+1).

Original entry on oeis.org

14, 14229, 194931, 8897930, 278110142
Offset: 1

Views

Author

Michel Marcus, Aug 07 2025

Keywords

Comments

No other terms up to 10^9.

Crossrefs

Cf. A064945.

Programs

A064944 a(n) = Sum_{i|n, j|n, j >= i} j.

Original entry on oeis.org

1, 5, 7, 17, 11, 38, 15, 49, 34, 60, 23, 132, 27, 82, 82, 129, 35, 191, 39, 207, 112, 126, 47, 384, 86, 148, 142, 283, 59, 469, 63, 321, 172, 192, 172, 666, 75, 214, 202, 597, 83, 640, 87, 435, 403, 258, 95, 1016, 162, 485, 262, 511, 107, 812, 264, 813, 292, 324
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = max(1,1)+max(1,2)+max(1,3)+max(1,6)+max(2,2)+max(2,3)+max(2,6)+max(3,3)+max(3,6)+max(6,6)=38, or a(6) = dot_product(1,2,3,4)*(1,2,3,6)=1*1+2*2+3*3+4*6=38.
		

Crossrefs

Programs

  • Haskell
    a064944 = sum . zipWith (*) [1..] . a027750_row'
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Maple
    with(numtheory): seq(add(i*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    A064944[n_] := #.Range[Length[#]] & [Divisors[n]];
    Array[A064944, 100] (* Paolo Xausa, Aug 07 2025 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=1, length(d), i*d[i]); \\ Harry J. Smith, Sep 30 2009
    
  • Python
    from sympy import divisors
    def A064944(n): return sum(a*b for a, b in enumerate(divisors(n),1)) # Chai Wah Wu, Aug 07 2025

Formula

a(n) = Sum_{i=1..tau(n)} i*d_i, where {d_i}, i=1..tau(n) is the increasing sequence of divisors of n.
a(n) = Sum_{i=1..A000005(n)} i*A027750(n, i). - Michel Marcus, Jun 10 2015
From Ridouane Oudra, Aug 01 2025: (Start)
a(n) = Sum_{d|n} (n/d)*A135539(n,d).
a(n) = A064946(n) + A000203(n).
a(n) = (A064948(n) + A000203(n))/2.
a(n) = A337360(n) - A064945(n).
a(n) = A064948(n) - A064946(n).
a(n) = A064840(n) - A064947(n). (End)

A064949 a(n) = Sum_{i|n, j|n} min(i,j).

Original entry on oeis.org

1, 5, 6, 15, 8, 32, 10, 37, 23, 42, 14, 100, 16, 52, 52, 83, 20, 125, 22, 132, 64, 72, 26, 252, 45, 82, 76, 162, 32, 286, 34, 177, 88, 102, 88, 397, 40, 112, 100, 336, 44, 352, 46, 222, 208, 132, 50, 572, 75, 239, 124, 252, 56, 416, 120, 414, 136, 162, 62, 916, 64
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(7,5,3,1)*(1,2,3,6) = 7*1 + 5*2 + 3*3 + 1*6 = 32.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((2*tau(n)-2*i+1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    Array[Function[{t, d}, Total@ MapIndexed[#1 (2 t - 2 First[#2] + 1) &, d]] @@ {DivisorSigma[0, #], Divisors[#]} &, 61] (* Michael De Vlieger, Oct 25 2021 *)
  • PARI
    a(n) = { my(d=divisors(n), t=length(d)); sum(i=1, t, (2*t - 2*i + 1)*d[i]) } \\ Harry J. Smith, Oct 01 2009
    
  • PARI
    A064949(n) = { my(i=0, u=numdiv(n)); sumdiv(n,d,i++; (((2*u)-(2*i))+1)*d); }; \\ Antti Karttunen, Nov 14 2021

Formula

a(n) = Sum_{i=1..tau(n)} (2*tau(n)-2*i+1)*d_i, where {d_i}, i=1..tau(n), is increasing sequence of divisors of n.
a(n) = Sum_{i=1..n} A135539(n,i)^2. - Ridouane Oudra, Oct 25 2021
a(n) = A000203(n) * (2*A000005(n)+1) - 2*A064944(n). - Amiram Eldar, Jan 13 2025
From Ridouane Oudra, Aug 13 2025: (Start)
a(n) = A064945(n) + A064947(n).
a(n) = 2*A064947(n) + A000203(n).
a(n) = 2*A064945(n) - A000203(n).
a(n) = 2*A064840(n) - A064948(n). (End)

A064946 a(n) = Sum_{i|n, j|n, j>i} j.

Original entry on oeis.org

0, 2, 3, 10, 5, 26, 7, 34, 21, 42, 11, 104, 13, 58, 58, 98, 17, 152, 19, 165, 80, 90, 23, 324, 55, 106, 102, 227, 29, 397, 31, 258, 124, 138, 124, 575, 37, 154, 146, 507, 41, 544, 43, 351, 325, 186, 47, 892, 105, 392, 190, 413, 53, 692, 192, 693, 212, 234, 59
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(0,1,2,3)*(1,2,3,6) = 0*1 + 1*2 + 2*3 + 3*6 = 26.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((i-1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    A064946[n_] := #.Range[Length[#]] & [Rest[Divisors[n]]];
    Array[A064946, 100] (* Paolo Xausa, Aug 14 2025 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=2, length(d), (i - 1)*d[i]); \\ Harry J. Smith, Oct 01 2009

Formula

a(n) = Sum_{i=1..tau(n)} (i-1)*d_i, where {d_i}, i=1..tau(n), is the increasing sequence of the divisors of n.
a(n) = A064944(n) - A000203(n). - Amiram Eldar, Dec 23 2024
From Ridouane Oudra, Aug 06 2025: (Start)
a(n) = A064948(n) - A064944(n).
a(n) = A064840(n) - A064945(n).
a(n) = A337297(n) - A064947(n).
a(n) = (A064948(n) - A000203(n))/2. (End)

A064947 a(n) = Sum_{i|n, j|n, j>i} i.

Original entry on oeis.org

0, 1, 1, 4, 1, 10, 1, 11, 5, 12, 1, 36, 1, 14, 14, 26, 1, 43, 1, 45, 16, 18, 1, 96, 7, 20, 18, 53, 1, 107, 1, 57, 20, 24, 20, 153, 1, 26, 22, 123, 1, 128, 1, 69, 65, 30, 1, 224, 9, 73, 26, 77, 1, 148, 24, 147, 28, 36, 1, 374, 1, 38, 77, 120, 26, 168, 1, 93, 32, 165, 1, 411, 1, 44
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Comments

For given n, iterate a(n); a(a(n)); a(a(a(n))); ... Does this iterative process always lead to a(a(...(a(n))...)) = 1? - Ctibor O. Zizka, Apr 17 2008
No. For example, a(4) = 4, a(14) = 14, and a(99) = 99. - Jason Yuen, Jan 07 2025

Examples

			a(6) = dot_product(3,2,1,0)*(1,2,3,6) = 3*1 + 2*2 + 1*3 + 0*6 = 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((tau(n)-i)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    Table[t = DivisorSigma[0, n]; Total@ MapIndexed[(t - First[#2])*#1 &, Divisors[n]], {n, 120}] (* Michael De Vlieger, Jan 07 2025 *)
  • PARI
    a(n) = my(d=divisors(n), t=length(d)); sum(i=1, t - 1, (t - i)*d[i]); \\ Harry J. Smith, Oct 01 2009

Formula

a(n) = Sum_{i=1..tau(n)} (tau(n)-i)*d_i, where {d_i}, i=1..tau(n), is increasing sequence of divisors of n.
From Ridouane Oudra, Aug 07 2025: (Start)
a(n) = A064945(n) - A000203(n).
a(n) = A064840(n) - A064944(n).
a(n) = A064949(n) - A064945(n).
a(n) = A337297(n) - A064946(n).
a(n) = (A064949(n) - A000203(n))/2. (End)

A197410 Product of cumulative sums of divisors of n.

Original entry on oeis.org

1, 3, 4, 21, 6, 216, 8, 315, 52, 432, 12, 80640, 14, 720, 864, 9765, 18, 176904, 20, 232848, 1408, 1512, 24, 149299200, 186, 2016, 2080, 460992, 30, 274827168, 32, 615195, 2880, 3240, 3744, 13333320000, 38, 3960, 3808, 680400000, 42, 702079488, 44, 1270080
Offset: 1

Views

Author

Keywords

Comments

When n is prime, a(n) = n + 1.

Examples

			a(4) = 21 because the divisors of 4 are 1, 2 and 4, their cumulative sums are 1, 3 and 7, and 1 * 3 * 7 = 21.
a(5) = 6 because the divisors of 5 are 1 and 5, their cumulative sums are 1 and 6, and 1 * 6 = 6.
		

Crossrefs

Programs

  • Haskell
    a197410 = product . scanl1 (+) . a027750_row
    -- Reinhard Zumkeller, Jan 26 2013
  • Mathematica
    Table[Times@@Table[Plus@@Take[Divisors[n], k], {k, DivisorSigma[0, n]}], {n, 44}] (* Alonso del Arte, Oct 14 2011 *)
    Table[Times@@Accumulate[Divisors[n]],{n,50}] (* Harvey P. Dale, Aug 15 2013 *)
  • PARI
    a(n)=local(ds,sd);ds=divisors(n);prod(k=1,#ds,sd+=ds[k])
    

A220849 a(n) = Product_{d|n} Product_{d_x|n , d_x <= d} d_x.

Original entry on oeis.org

1, 2, 3, 16, 5, 432, 7, 1024, 81, 2000, 11, 71663616, 13, 5488, 10125, 1048576, 17, 816293376, 19, 2048000000, 27783, 21296, 23, 219122084616339456, 625, 35152, 59049, 15420489728, 29, 2550916800000000000, 31, 34359738368, 107811, 78608, 214375
Offset: 1

Views

Author

Jaroslav Krizek, Dec 22 2012

Keywords

Comments

Conjecture: sequence is injective (all terms of this sequence occur only once).
The subsequence of fixed points consists of 1 together with the primes (A008578). - Bernard Schott, Oct 26 2021

Examples

			The divisors of 6 are 1, 2, 3, 6. a(n) = 1*(1*2)*(1*2*3)*(1*2*3*6) = 1*2*6*36 = 432.
		

Crossrefs

Cf. A000292, A006881, A007955, A008578 (fixed points), A064945, A266265.

Programs

  • Mathematica
    a[n_] := Module[{d = Divisors[n], nd}, nd = Length[d]; Product[d[[i]]^(nd - i + 1), {i, 1, nd}]]; Array[a, 35] (* Amiram Eldar, Oct 23 2021 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, vecprod(select(x->(x<=d[k]), d))); \\ Michel Marcus, Oct 23 2021

Formula

a(p) = p for prime p.
From Bernard Schott, Oct 29 2021: (Start)
For p prime and k >= 0, a(p^k) = p^A000292(k).
For n = p*q, p < q primes (A006881), a(n) = p*n^3. (End)

Extensions

a(24) corrected by Seiichi Manyama, Oct 23 2021

A246916 Sum of the cumulative sums of all the permutations of divisors of number n.

Original entry on oeis.org

1, 9, 12, 84, 18, 720, 24, 900, 156, 1080, 36, 70560, 42, 1440, 1440, 11160, 54, 98280, 60, 105840, 1920, 2160, 72, 10886400, 372, 2520, 2400, 141120, 90, 13063680, 96, 158760, 2880, 3240, 2880, 165110400, 114, 3600, 3360, 16329600, 126, 17418240, 132, 211680
Offset: 1

Views

Author

Jaroslav Krizek, Sep 12 2014

Keywords

Comments

For number n there are A130674(n) = tau(n)! = A000005(n)! permutations of divisors of number n and the same number of their cumulative sums. This sequence is sequence of sums of these sums.
Sequences A064945 and A064944 are sequences of minimal and maximal values of cumulative sums of all the permutations of divisors of number n.

Examples

			For n = 4; there are tau(4)! = 6 permutations of divisors of number 4: (1, 2, 4); (1, 4, 2); (2, 1, 4); (2, 4, 1); (4, 1, 2); (4, 2, 1). Sum of their cumulative sums = 11 + 13 + 12 + 15 + 16 + 17 = 84.
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n)*(Order(AlternatingGroup(NumberOfDivisors(n)+1))): n in [1..100]];
    
  • Mathematica
    A246916[n_] := DivisorSigma[1, n]*(DivisorSigma[0, n] + 1)!/2;
    Array[A246916, 50] (* Paolo Xausa, Aug 08 2025 *)
  • PARI
    A001710(n) = if( n<2, n>=0, n!/2);
    A246916(n) = (sigma(n) * A001710(numdiv(n) + 1)); \\ Antti Karttunen, Sep 10 2017

Formula

a(n) = A130674(n) * (A064945(n) + A064944(n)) / 2 = (tau(n))! * ((Sum_{i=1..tau(n)} (tau(n) - i + 1)*d_i) + (Sum_{i=1..tau(n)} i*d_i)) / 2; where {d_i}, i = 1..tau(n) is the increasing sequence of divisors of n.
a(n) = sigma(n) * A001710(tau(n) + 1) = A000203(n) * A001710(A000005(n)+1).
Showing 1-8 of 8 results.