cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A064945 a(n) = Sum_{i|n, j|n, j >= i} i.

Original entry on oeis.org

1, 4, 5, 11, 7, 22, 9, 26, 18, 30, 13, 64, 15, 38, 38, 57, 19, 82, 21, 87, 48, 54, 25, 156, 38, 62, 58, 109, 31, 179, 33, 120, 68, 78, 68, 244, 39, 86, 78, 213, 43, 224, 45, 153, 143, 102, 49, 348, 66, 166, 98, 175, 55, 268, 96, 267, 108, 126, 61, 542, 63, 134, 181
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(4,3,2,1)*(1,2,3,6) = 4*1+3*2+2*3+1*6 = 22.
		

Crossrefs

Programs

  • Haskell
    a064945 = sum . zipWith (*) [1..] . reverse . a027750_row'
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Maple
    with(numtheory): seq(add((tau(n)-i+1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    A064945[n_] := #.Range[Length[#], 1, -1] & [Divisors[n]];
    Array[A064945, 100] (* Paolo Xausa, Aug 07 2025 *)
  • PARI
    a(n) = my(d=divisors(n), t=length(d)); sum(i=1, t, (t - i + 1)*d[i]); \\ Harry J. Smith, Oct 01 2009
    
  • PARI
    a(n)=my(d=divisors(n)); sum(i=1,#d,(#d+1-i)*d[i]) \\ Charles R Greathouse IV, Jun 10 2015
    
  • Python
    from sympy import divisors, divisor_sigma
    def A064945(n): return (divisor_sigma(n,0)+1)*divisor_sigma(n)-sum(a*b for a, b in enumerate(divisors(n),1)) # Chai Wah Wu, Aug 07 2025

Formula

a(n) = Sum_{i=1..tau(n)} (tau(n)-i+1)*d_i, where {d_i}, i=1..tau(n), is the increasing sequence of divisors of n.
a(n) = Sum_{i=1..A000005(n)} (A000005(n)-i+1)*A027750(n, i). - Michel Marcus, Jun 10 2015
From Ridouane Oudra, Aug 02 2025: (Start)
a(n) = Sum_{d|n} d*A135539(n,d).
a(n) = A064947(n) + A000203(n).
a(n) = (A064949(n) + A000203(n))/2.
a(n) = A064949(n) - A064947(n).
a(n) = A337360(n) - A064944(n).
a(n) = A064840(n) - A064946(n). (End)

A064949 a(n) = Sum_{i|n, j|n} min(i,j).

Original entry on oeis.org

1, 5, 6, 15, 8, 32, 10, 37, 23, 42, 14, 100, 16, 52, 52, 83, 20, 125, 22, 132, 64, 72, 26, 252, 45, 82, 76, 162, 32, 286, 34, 177, 88, 102, 88, 397, 40, 112, 100, 336, 44, 352, 46, 222, 208, 132, 50, 572, 75, 239, 124, 252, 56, 416, 120, 414, 136, 162, 62, 916, 64
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(7,5,3,1)*(1,2,3,6) = 7*1 + 5*2 + 3*3 + 1*6 = 32.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((2*tau(n)-2*i+1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    Array[Function[{t, d}, Total@ MapIndexed[#1 (2 t - 2 First[#2] + 1) &, d]] @@ {DivisorSigma[0, #], Divisors[#]} &, 61] (* Michael De Vlieger, Oct 25 2021 *)
  • PARI
    a(n) = { my(d=divisors(n), t=length(d)); sum(i=1, t, (2*t - 2*i + 1)*d[i]) } \\ Harry J. Smith, Oct 01 2009
    
  • PARI
    A064949(n) = { my(i=0, u=numdiv(n)); sumdiv(n,d,i++; (((2*u)-(2*i))+1)*d); }; \\ Antti Karttunen, Nov 14 2021

Formula

a(n) = Sum_{i=1..tau(n)} (2*tau(n)-2*i+1)*d_i, where {d_i}, i=1..tau(n), is increasing sequence of divisors of n.
a(n) = Sum_{i=1..n} A135539(n,i)^2. - Ridouane Oudra, Oct 25 2021
a(n) = A000203(n) * (2*A000005(n)+1) - 2*A064944(n). - Amiram Eldar, Jan 13 2025
From Ridouane Oudra, Aug 13 2025: (Start)
a(n) = A064945(n) + A064947(n).
a(n) = 2*A064947(n) + A000203(n).
a(n) = 2*A064945(n) - A000203(n).
a(n) = 2*A064840(n) - A064948(n). (End)

A064946 a(n) = Sum_{i|n, j|n, j>i} j.

Original entry on oeis.org

0, 2, 3, 10, 5, 26, 7, 34, 21, 42, 11, 104, 13, 58, 58, 98, 17, 152, 19, 165, 80, 90, 23, 324, 55, 106, 102, 227, 29, 397, 31, 258, 124, 138, 124, 575, 37, 154, 146, 507, 41, 544, 43, 351, 325, 186, 47, 892, 105, 392, 190, 413, 53, 692, 192, 693, 212, 234, 59
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(0,1,2,3)*(1,2,3,6) = 0*1 + 1*2 + 2*3 + 3*6 = 26.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((i-1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    A064946[n_] := #.Range[Length[#]] & [Rest[Divisors[n]]];
    Array[A064946, 100] (* Paolo Xausa, Aug 14 2025 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=2, length(d), (i - 1)*d[i]); \\ Harry J. Smith, Oct 01 2009

Formula

a(n) = Sum_{i=1..tau(n)} (i-1)*d_i, where {d_i}, i=1..tau(n), is the increasing sequence of the divisors of n.
a(n) = A064944(n) - A000203(n). - Amiram Eldar, Dec 23 2024
From Ridouane Oudra, Aug 06 2025: (Start)
a(n) = A064948(n) - A064944(n).
a(n) = A064840(n) - A064945(n).
a(n) = A337297(n) - A064947(n).
a(n) = (A064948(n) - A000203(n))/2. (End)

A064947 a(n) = Sum_{i|n, j|n, j>i} i.

Original entry on oeis.org

0, 1, 1, 4, 1, 10, 1, 11, 5, 12, 1, 36, 1, 14, 14, 26, 1, 43, 1, 45, 16, 18, 1, 96, 7, 20, 18, 53, 1, 107, 1, 57, 20, 24, 20, 153, 1, 26, 22, 123, 1, 128, 1, 69, 65, 30, 1, 224, 9, 73, 26, 77, 1, 148, 24, 147, 28, 36, 1, 374, 1, 38, 77, 120, 26, 168, 1, 93, 32, 165, 1, 411, 1, 44
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Comments

For given n, iterate a(n); a(a(n)); a(a(a(n))); ... Does this iterative process always lead to a(a(...(a(n))...)) = 1? - Ctibor O. Zizka, Apr 17 2008
No. For example, a(4) = 4, a(14) = 14, and a(99) = 99. - Jason Yuen, Jan 07 2025

Examples

			a(6) = dot_product(3,2,1,0)*(1,2,3,6) = 3*1 + 2*2 + 1*3 + 0*6 = 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((tau(n)-i)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    Table[t = DivisorSigma[0, n]; Total@ MapIndexed[(t - First[#2])*#1 &, Divisors[n]], {n, 120}] (* Michael De Vlieger, Jan 07 2025 *)
  • PARI
    a(n) = my(d=divisors(n), t=length(d)); sum(i=1, t - 1, (t - i)*d[i]); \\ Harry J. Smith, Oct 01 2009

Formula

a(n) = Sum_{i=1..tau(n)} (tau(n)-i)*d_i, where {d_i}, i=1..tau(n), is increasing sequence of divisors of n.
From Ridouane Oudra, Aug 07 2025: (Start)
a(n) = A064945(n) - A000203(n).
a(n) = A064840(n) - A064944(n).
a(n) = A064949(n) - A064945(n).
a(n) = A337297(n) - A064946(n).
a(n) = (A064949(n) - A000203(n))/2. (End)

A064948 a(n) = Sum_{i|n, j|n} max(i,j).

Original entry on oeis.org

1, 7, 10, 27, 16, 64, 22, 83, 55, 102, 34, 236, 40, 140, 140, 227, 52, 343, 58, 372, 192, 216, 70, 708, 141, 254, 244, 510, 88, 866, 94, 579, 296, 330, 296, 1241, 112, 368, 348, 1104, 124, 1184, 130, 786, 728, 444, 142, 1908, 267, 877, 452, 924, 160, 1504, 456
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(1,3,5,7)*(1,2,3,6) = 1*1 + 3*2 + 5*3 + 7*6 = 64.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((2*i-1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    A064948[n_] := #.(2*Range[Length[#]] - 1) & [Divisors[n]];
    Array[A064948, 100] (* Paolo Xausa, Aug 14 2025 *)
  • PARI
    a(n) = { my(d=divisors(n)); sum(i=1, #d, (2*i - 1)*d[i]) } \\ Harry J. Smith, Oct 01 2009

Formula

a(n) = Sum_{i=1..tau(n)} (2*i-1)*d_i, where {d_i}, i=1..tau(n), is the increasing sequence of the divisors of n.
a(n) = 2*A064944(n) - A000203(n). - Amiram Eldar, Dec 23 2024
From Ridouane Oudra, Aug 07 2025: (Start)
a(n) = A064944(n) + A064946(n).
a(n) = 2*A064946(n) + A000203(n).
a(n) = 2*A064840(n) - A064949(n). (End)

A246916 Sum of the cumulative sums of all the permutations of divisors of number n.

Original entry on oeis.org

1, 9, 12, 84, 18, 720, 24, 900, 156, 1080, 36, 70560, 42, 1440, 1440, 11160, 54, 98280, 60, 105840, 1920, 2160, 72, 10886400, 372, 2520, 2400, 141120, 90, 13063680, 96, 158760, 2880, 3240, 2880, 165110400, 114, 3600, 3360, 16329600, 126, 17418240, 132, 211680
Offset: 1

Views

Author

Jaroslav Krizek, Sep 12 2014

Keywords

Comments

For number n there are A130674(n) = tau(n)! = A000005(n)! permutations of divisors of number n and the same number of their cumulative sums. This sequence is sequence of sums of these sums.
Sequences A064945 and A064944 are sequences of minimal and maximal values of cumulative sums of all the permutations of divisors of number n.

Examples

			For n = 4; there are tau(4)! = 6 permutations of divisors of number 4: (1, 2, 4); (1, 4, 2); (2, 1, 4); (2, 4, 1); (4, 1, 2); (4, 2, 1). Sum of their cumulative sums = 11 + 13 + 12 + 15 + 16 + 17 = 84.
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n)*(Order(AlternatingGroup(NumberOfDivisors(n)+1))): n in [1..100]];
    
  • Mathematica
    A246916[n_] := DivisorSigma[1, n]*(DivisorSigma[0, n] + 1)!/2;
    Array[A246916, 50] (* Paolo Xausa, Aug 08 2025 *)
  • PARI
    A001710(n) = if( n<2, n>=0, n!/2);
    A246916(n) = (sigma(n) * A001710(numdiv(n) + 1)); \\ Antti Karttunen, Sep 10 2017

Formula

a(n) = A130674(n) * (A064945(n) + A064944(n)) / 2 = (tau(n))! * ((Sum_{i=1..tau(n)} (tau(n) - i + 1)*d_i) + (Sum_{i=1..tau(n)} i*d_i)) / 2; where {d_i}, i = 1..tau(n) is the increasing sequence of divisors of n.
a(n) = sigma(n) * A001710(tau(n) + 1) = A000203(n) * A001710(A000005(n)+1).
Showing 1-6 of 6 results.