cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A009205 a(n) = gcd(d(n), sigma(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 1, 1, 2, 2, 2, 2, 4, 4, 1, 2, 3, 2, 6, 4, 4, 2, 4, 1, 2, 4, 2, 2, 8, 2, 3, 4, 2, 4, 1, 2, 4, 4, 2, 2, 8, 2, 6, 6, 4, 2, 2, 3, 3, 4, 2, 2, 8, 4, 8, 4, 2, 2, 12, 2, 4, 2, 1, 4, 8, 2, 6, 4, 8, 2, 3, 2, 2, 2, 2, 4, 8, 2, 2, 1, 2, 2, 4, 4, 4, 4, 4, 2, 6, 4, 6, 4, 4, 4, 12, 2, 3, 6, 1, 2, 8, 2, 2, 8, 2, 2, 4, 2, 8, 4, 2, 2, 8, 4, 6, 2, 4, 4, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[0,n],DivisorSigma[1,n]],{n,120}] (* Harvey P. Dale, Dec 05 2017 *)
  • PARI
    A009205(n) = gcd(numdiv(n),sigma(n)); \\ Antti Karttunen, May 22 2017
    
  • Python
    from math import prod, gcd
    from sympy import factorint
    def A009205(n):
        f = factorint(n).items()
        return gcd(prod(e+1 for p, e in f),prod((p**(e+1)-1)//(p-1) for p,e in f)) # Chai Wah Wu, Jul 27 2023

Formula

a(n) = A064840(n)/A009278(n). - Amiram Eldar, Jan 31 2025

Extensions

Data section extended to 120 terms by Antti Karttunen, May 22 2017

A336723 a(n) = lcm(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 168, 30, 36, 56, 960, 351, 900, 132, 12096, 182, 1176, 1800, 158720, 306, 75816, 380, 168000, 14112, 4356, 552, 1658880, 11625, 14196, 29160, 65856, 870, 810000, 992, 2064384, 17424, 31212, 58800, 917070336, 1406, 21660, 85176, 23040000, 1722, 6223392
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2020

Keywords

Comments

a(n) = pod(n) for numbers n: 1, 6, 30, 66, 84, 102, 120, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, ...

Examples

			a(6) = lcm(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) = 36.
		

Crossrefs

Cf. A009278 (lcm(tau(n), sigma(n))), A324528 (lcm(tau(n), pod(n))), A324529 (lcm(sigma(n), pod(n))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A007955 (pod(n)), A336722 (gcd(tau(n), sigma(n), pod(n))).
Cf. A277521 (numbers k such that a(k) = pod(k) and simultaneously A336722(k) = tau(k)).

Programs

  • Magma
    [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := LCM @@ {(d = DivisorSigma[0,n]), DivisorSigma[1, n], n^(d/2)}; Array[a, 50] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); lcm([#d, vecsum(d), vecprod(d)]); \\ Michel Marcus, Aug 12 2020

Formula

a(p) = p^2 + p for p = primes (A000040).

A334784 a(n) = Sum_{d|n} lcm(tau(d), sigma(d)).

Original entry on oeis.org

1, 7, 5, 28, 7, 23, 9, 88, 44, 49, 13, 128, 15, 39, 35, 243, 19, 140, 21, 112, 45, 55, 25, 308, 100, 105, 84, 228, 31, 161, 33, 369, 65, 133, 63, 1064, 39, 87, 75, 532, 43, 183, 45, 160, 152, 103, 49, 1083, 66, 328, 95, 420, 55, 300, 91, 408, 105, 217, 61, 476
Offset: 1

Views

Author

Jaroslav Krizek, May 10 2020

Keywords

Examples

			a(6) = lcm(tau(1), sigma(1)) + lcm(tau(2), sigma(2)) + lcm(tau(3), sigma(3)) + lcm(tau(6), sigma(6)) = lcm(1, 1) + lcm(2, 3) + lcm(2, 4) + lcm(4, 12) = 1 + 6 + 4 + 12 = 23.
		

Crossrefs

Cf. A334579 (Sum_{d|n} gcd(tau(d), sigma(d))), A334783 (Sum_{d|n} lcm(d, sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009278 (lcm(tau(n), sigma(n))).

Programs

  • Magma
    [&+[LCM(#Divisors(d), &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := DivisorSum[n, LCM[DivisorSigma[0, #], DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, May 10 2020 *)
  • PARI
    a(n) = sumdiv(n, d, lcm(numdiv(d), sigma(d))); \\ Michel Marcus, May 10 2020

Formula

a(p) = p + 2 for p = odd primes (A065091).

A307740 Numbers k such that k divides lcm(tau(k), sigma(k)).

Original entry on oeis.org

1, 2, 6, 12, 24, 28, 40, 84, 120, 252, 360, 496, 672, 2480, 3276, 4680, 7440, 8128, 30240, 32760, 56896, 293760, 435708, 523776, 997920, 2178540, 2618880, 8910720, 23569920, 33550336, 45532800, 64995840, 102136320, 142990848, 275890944, 436154368, 459818240
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2019

Keywords

Comments

Numbers k such that k divides A009278(k).
Conjecture: multiply-perfect numbers (A007691) are terms.
Corresponding values of lcm(tau(k), sigma(k)) / k for numbers k from this sequence: 1, 3, 2, 7, 5, 6, 9, 8, 6, 26, 13, 10, 3, 12, 28, 14, 16, 14, 4, ...
Sequence of the smallest numbers k such that lcm(tau(k), sigma(k)) / k = n for n >= 1: 1, 6, 2, 30240, 24, 28, 12, 84, 40, 496, ...

Examples

			6 is in the sequence because lcm(tau(6), sigma(6)) / 6 = lcm(4, 12) / 6 = 12 / 6 = 2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | LCM(SumOfDivisors(n), NumberOfDivisors(n)) mod n eq 0]
    
  • Mathematica
    aQ[n_]:=Divisible[LCM@@(DivisorSigma[#,n]&/@{0,1}),n]; Select[Range[10000], aQ] (* Amiram Eldar, May 07 2019 *)
  • PARI
    isok(n) = !(lcm(numdiv(n), sigma(n)) % n); \\ Michel Marcus, Apr 26 2019

Extensions

More terms from Amiram Eldar, May 07 2019

A334806 a(n) = Product_{d|n} lcm(tau(d), sigma(d)) where tau(k) is the number of divisors of k (A000005) and sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

1, 6, 4, 126, 6, 288, 8, 7560, 156, 1296, 12, 508032, 14, 1152, 576, 1171800, 18, 876096, 20, 1143072, 1024, 2592, 24, 3657830400, 558, 7056, 6240, 4064256, 30, 107495424, 32, 147646800, 2304, 11664, 2304, 1265709908736, 38, 7200, 3136, 24690355200, 42
Offset: 1

Views

Author

Jaroslav Krizek, Jun 26 2020

Keywords

Examples

			a(6) = lcm(tau(1), sigma(1)) * lcm(tau(2), sigma(2)) * lcm(tau(3), sigma(3)) * lcm(tau(6), sigma(6)) = lcm(1, 1) * lcm(2, 3) * lcm(2, 4) * lcm(4, 12) = 1 * 6 * 4 * 12 = 288.
		

Crossrefs

Cf. A334784 (Sum_{d|n} lcm(tau(d), sigma(d))), A334729 (Product_{d|n} gcd(tau(d), sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009278 (lcm(tau(n), sigma(n))).

Programs

  • Magma
    [&*[LCM(#Divisors(d), &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := Product[LCM[DivisorSigma[0, d], DivisorSigma[1, d]], {d, Divisors[n]}]; Array[a, 41] (* Amiram Eldar, Jun 27 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(numdiv(d[k]), sigma(d[k]))); \\ Michel Marcus, Jun 27 2020

Formula

a(p) = p + 1 for p = odd primes (A065091).
Showing 1-5 of 5 results.