cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A009194 a(n) = gcd(n, sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 28, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2
Offset: 1

Views

Author

Keywords

Comments

LCM of common divisors of n and sigma(n). It equals n if n is multiply perfect (A007691). - Labos Elemer, Aug 14 2002

Crossrefs

Programs

Formula

A000005(a(n)) = A073802(n). - Reinhard Zumkeller, Mar 12 2010
A006530(a(n)) = A082062(n). - Reinhard Zumkeller, Jul 10 2011
a(A014567(n)) = 1; A069059(a(n)) > 1. - Reinhard Zumkeller, Mar 23 2013
a(n) = n/A017666(n). - Antti Karttunen, May 22 2017

A009191 a(n) = gcd(n, d(n)), where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 6, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 8, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 3, 2, 1, 2, 1, 10, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Keywords

Comments

a(A046642(n)) = 1.
First occurrence of k: 1, 2, 9, 8, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 384, .... Conjecture: each k is present. - Robert G. Wilson v, Mar 27 2013
Conjecture is true. See David A. Corneth's comment in A324553. - Antti Karttunen, Mar 06 2019

Crossrefs

Cf. A046642 (positions of ones), A324553 (position of the first occurrence of each n).

Programs

Formula

a(n) = gcd(n, A000005(n)) = gcd(n, A049820(n)). - Antti Karttunen, Sep 25 2018

A057021 Denominator of (sum of divisors of n / number of divisors of n).

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 1, 4, 3, 2, 1, 3, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 2, 3, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 9, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Henry Bottomley, Jul 21 2000

Keywords

Comments

a(n) = 1 when n is listed in A003601, a(n) > 1 when n is listed in A049642. - Alonso del Arte, Jan 31 2006
a(A069081(n)) = 2. - Bernard Schott, Sep 19 2019

Examples

			a(12)=3 since the 6 divisors of 12 are 1, 2, 3, 4, 6 and 12 and 1+2+3+4+6+12=28 and 28/6=14/3.
		

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a057021 n = denominator $ a000203 n % a000005 n
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Magma
    [Denominator(SumOfDivisors(n)/#Divisors(n)):n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory): seq(denom(sigma(n)/tau(n)), n=1..70) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Denominator[Table[(Plus @@ Divisors[n])/Length[Divisors[n]], {n, 70}]] (* Alonso del Arte, Feb 24 2006 *)
  • PARI
    a(n) = denominator(sigma(n)/numdiv(n)); \\ Michel Marcus, Apr 12 2016
    
  • SageMath
    [denominator(sigma(n, 1)/sigma(n, 0)) for n in range(1, 71)] # Stefano Spezia, Jul 18 2025

Formula

a(n) = A057020(n)*A000005(n)/A000203(n) = A000005(n)/A009205(n).

A057020 Numerator of (sum of divisors of n / number of divisors of n).

Original entry on oeis.org

1, 3, 2, 7, 3, 3, 4, 15, 13, 9, 6, 14, 7, 6, 6, 31, 9, 13, 10, 7, 8, 9, 12, 15, 31, 21, 10, 28, 15, 9, 16, 21, 12, 27, 12, 91, 19, 15, 14, 45, 21, 12, 22, 14, 13, 18, 24, 62, 19, 31, 18, 49, 27, 15, 18, 15, 20, 45, 30, 14, 31, 24, 52, 127, 21, 18, 34, 21, 24, 18
Offset: 1

Views

Author

Henry Bottomley, Jul 21 2000

Keywords

Comments

Numerator of arithmetic mean of the divisors of n. - Jaroslav Krizek, Apr 26 2010
The average order of a(n)/A057021(n) is asymptotic to n/sqrt(log(n)); see the Bateman et al. link or the Sutantyo link. - Charles R Greathouse IV, May 17 2012

Examples

			a(12) = 14 since the 6 factors of 12 are 1, 2, 3, 4, 6 and 12 and 1 + 2 + 3 + 4 + 6 + 12 = 28 and 28/6 = 14/3.
		

References

  • V. I. Arnold, Dynamics, Statistics, and Projective Geometry of Galois Fields, Cambridge University Press, Cambridge, 2011, p. 78.

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a057020 n = numerator $ a000203 n % a000005 n
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Maple
    with(numtheory): seq(numer(sigma(n)/tau(n)), n=1..70) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Numerator[Table[(Plus @@ Divisors[n])/Length[Divisors[n]], {n, 70}]] (* Alonso del Arte, Feb 24 2006 *)
    Table[Numerator[DivisorSigma[1,n]/DivisorSigma[0,n]],{n,100}] (* Harvey P. Dale, Dec 19 2023 *)
  • PARI
    a(n)=numerator(sigma(n)/numdiv(n)) \\ Charles R Greathouse IV, May 17 2012
    
  • SageMath
    [numerator(sigma(n, 1)/sigma(n, 0)) for n in range(1, 71)] # Stefano Spezia, Jul 18 2025

Formula

a(n) = A057021(n) * A000203(n)/A000005(n) = A000203(n)/A009205(n) = (A057022(n) + A054025(n)/A000005(n)) * A057021(n).
Sum_{k=1..n} a(k)/A057021(k) ~ c * n^2 /sqrt(log(n)), where c = A308051. - Amiram Eldar, Apr 15 2025

A306671 a(n) = gcd(tau(n), pod(n)) where tau(k) = the number of the divisors of k (A000005) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 1, 1, 1, 4, 1, 4, 3, 4, 1, 6, 1, 4, 1, 1, 1, 6, 1, 2, 1, 4, 1, 8, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 9, 1, 4, 1, 8, 1, 8, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 8, 1, 8, 1, 4, 1, 12, 1, 4, 3, 1, 1, 8, 1, 2, 1, 8, 1, 12, 1, 4, 3, 2, 1, 8, 1, 10, 1, 4, 1, 12, 1, 4
Offset: 1

Views

Author

Jaroslav Krizek, Mar 04 2019

Keywords

Comments

Sequence of the smallest numbers k such that a(k) = n: 1, 2, 9, 6, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 120, ...

Examples

			For n=6: a(6) = gcd(tau(6), pod(6)) = gcd(4, 36) = 4.
		

Crossrefs

Programs

  • Magma
    [GCD(NumberOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 100]]
    
  • PARI
    a(n) = gcd(numdiv(n), vecprod(divisors(n))); \\ Michel Marcus, Mar 04 2019

Formula

a(n) = 1 for numbers in A046642.
a(n) = tau(n) for numbers in A120736.

A336722 a(n) = gcd(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 3, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 8, 1, 2, 3, 4, 1, 2, 1, 1, 1, 2, 1, 8, 1, 8, 1, 2, 1, 12, 1, 4, 1, 1, 1, 8, 1, 2, 1, 8, 1, 3, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 4, 1, 4, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 1, 3, 1, 1, 8, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2020

Keywords

Comments

a(n) = tau(n) for numbers n: 1, 6, 14, 22, 30, 38, 42, 46, 54, 56, 60, 62, 66, 70, 78, 86, 94, 96, 102, ...

Examples

			a(6) = gcd(tau(6), sigma(6), pod(6)) = gcd(4, 12, 36) = 4.
		

Crossrefs

Cf. A009205 (gcd(tau(n), sigma(n))), A306671 (gcd(tau(n), pod(n))), A306682 (gcd(sigma(n), pod(n))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A007955 (pod(n)), A336723 (lcm(tau(n), sigma(n), pod(n))).
Cf. A277521 (numbers k such that a(k) = tau(k) and simultaneously A336723(k) = pod(k)).

Programs

  • Magma
    [GCD([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := GCD @@ {(d = DivisorSigma[0,n]), DivisorSigma[1, n], n^(d/2)}; Array[a, 100] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); \\ From A007955
    A336722(n) = gcd(A007955(n), gcd(numdiv(n), sigma(n))); \\ Antti Karttunen, Aug 10 2020

Formula

a(p) = 1 for p = primes (A000040).
a(n) = gcd(A007955(n), A009205(n)). - Antti Karttunen, Aug 10 2020

Extensions

Data section extended up to a(105) by Antti Karttunen, Aug 10 2020

A009278 a(n) = lcm(d(n), sigma(n)).

Original entry on oeis.org

1, 6, 4, 21, 6, 12, 8, 60, 39, 36, 12, 84, 14, 24, 24, 155, 18, 78, 20, 42, 32, 36, 24, 120, 93, 84, 40, 168, 30, 72, 32, 126, 48, 108, 48, 819, 38, 60, 56, 360, 42, 96, 44, 84, 78, 72, 48, 620, 57, 186, 72, 294, 54, 120, 72, 120, 80, 180, 60, 168, 62, 96, 312, 889, 84, 144, 68
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A064840(n)/A009205(n). - Amiram Eldar, Jan 31 2025

A057022 a(n) = floor((sum of divisors of n) / (number of divisors of n)), or floor(sigma_1(n)/sigma_0(n)).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 3, 4, 4, 6, 4, 7, 6, 6, 6, 9, 6, 10, 7, 8, 9, 12, 7, 10, 10, 10, 9, 15, 9, 16, 10, 12, 13, 12, 10, 19, 15, 14, 11, 21, 12, 22, 14, 13, 18, 24, 12, 19, 15, 18, 16, 27, 15, 18, 15, 20, 22, 30, 14, 31, 24, 17, 18, 21, 18, 34, 21, 24, 18
Offset: 1

Views

Author

Henry Bottomley, Jul 21 2000

Keywords

Comments

Floor of mean of divisors of n. - Jon E. Schoenfield, Dec 24 2016

Examples

			a(4)=2 since the 3 divisors of 4 are 1, 2 and 4 and floor((1 + 2 + 4)/3) = floor(7/3) = 2.
		

Crossrefs

Programs

  • Haskell
    a057022 n = a000203 n `div` a000005 n
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Mathematica
    Floor[Table[Total[Divisors[n]]/Length[Divisors[n]],{n,20}]] (* Daniel Jolly, Nov 15 2014 *)
    Table[Floor[DivisorSigma[1,n]/DivisorSigma[0,n]],{n,70}] (* Harvey P. Dale, Jan 14 2015 *)
  • PARI
    a(n) = sigma(n)\numdiv(n); \\ Michel Marcus, Nov 15 2014

Formula

a(n) = (A000203(n) - A054025(n))/A000005(n).

A306682 a(n) = gcd(sigma(n), pod(n)) where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 12, 1, 1, 1, 2, 1, 4, 1, 4, 3, 1, 1, 3, 1, 2, 1, 4, 1, 12, 1, 2, 1, 56, 1, 72, 1, 1, 3, 2, 1, 1, 1, 4, 1, 10, 1, 48, 1, 4, 3, 4, 1, 4, 1, 1, 9, 2, 1, 24, 1, 8, 1, 2, 1, 24, 1, 4, 1, 1, 1, 144, 1, 2, 3, 16, 1, 3, 1, 2, 1, 4, 1, 24, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Comments

See A324527(n) = the smallest numbers k such that a(k) = n.

Examples

			For n=6: a(6) = gcd(tau(6), pod(6)) = gcd(4, 36) = 4.
		

Crossrefs

Programs

  • Magma
    [GCD(SumOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 100]]
    
  • PARI
    a(n) = my(d=divisors(n)); gcd(vecsum(d), vecprod(d)); \\ Michel Marcus, Mar 05 2019

Formula

a(n) = 1 for numbers in A014567.
a(n) = tau(n) for numbers in A324526.

A336856 Prime-shifted analog of gcd(d(n), sigma(n)): a(n) = gcd(A000005(n), A003973(n)).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 4, 1, 4, 2, 6, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 8, 2, 8, 2, 2, 2, 4, 2, 2, 1, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 1, 4, 8, 2, 2, 4, 8, 2, 4, 2, 4, 6, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 4, 4, 8, 2, 4, 4, 6, 4, 4, 4, 12, 2, 2, 2, 3, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2020

Keywords

Crossrefs

Programs

  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A336856(n) = gcd(numdiv(n), A003973(n));

Formula

a(n) = A009205(A003961(n)).
a(n) = gcd(A000005(n), A003973(n)) = gcd(A000005(n), A336841(n)).
a(n) = gcd(A000005(n), 2*A336840(n)).
a(n) = A003973(n) / A336838(n) = A000005(n) / A336839(n).
For n > 1, a(n) = A336841(n) / A336837(n).
For all primes p, and n >= 0, a(p^((2^n)-1)) = 2^n.
Showing 1-10 of 15 results. Next