cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A348182 a(1) = 1; for n >= 2, a(n) = 1 + a(A057022(n)).

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 5, 6, 5, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 7, 6, 7, 6
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 05 2021

Keywords

Comments

Number of steps needed to reach one when starting from k = n and repeatedly applying the map that replaces k by A057022(k). First maximal values for n = 1,2,3,5,11,29,61, .. which, except 1, are all primes (empirical result).

Examples

			a(5) = 1 + a(3) = 1 + 1 + a(2) = 1 + 1 + 1 + a(1) = 1 + 1 + 1 + 1 = 4.
		

Crossrefs

Cf. A057022.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + a[Floor[DivisorSigma[1, n]/DivisorSigma[0, n]]]; Array[a, 100] (* Amiram Eldar, Oct 05 2021 *)

A057021 Denominator of (sum of divisors of n / number of divisors of n).

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 1, 4, 3, 2, 1, 3, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 2, 3, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 9, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Henry Bottomley, Jul 21 2000

Keywords

Comments

a(n) = 1 when n is listed in A003601, a(n) > 1 when n is listed in A049642. - Alonso del Arte, Jan 31 2006
a(A069081(n)) = 2. - Bernard Schott, Sep 19 2019

Examples

			a(12)=3 since the 6 divisors of 12 are 1, 2, 3, 4, 6 and 12 and 1+2+3+4+6+12=28 and 28/6=14/3.
		

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a057021 n = denominator $ a000203 n % a000005 n
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Magma
    [Denominator(SumOfDivisors(n)/#Divisors(n)):n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory): seq(denom(sigma(n)/tau(n)), n=1..70) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Denominator[Table[(Plus @@ Divisors[n])/Length[Divisors[n]], {n, 70}]] (* Alonso del Arte, Feb 24 2006 *)
  • PARI
    a(n) = denominator(sigma(n)/numdiv(n)); \\ Michel Marcus, Apr 12 2016
    
  • SageMath
    [denominator(sigma(n, 1)/sigma(n, 0)) for n in range(1, 71)] # Stefano Spezia, Jul 18 2025

Formula

a(n) = A057020(n)*A000005(n)/A000203(n) = A000005(n)/A009205(n).

A057020 Numerator of (sum of divisors of n / number of divisors of n).

Original entry on oeis.org

1, 3, 2, 7, 3, 3, 4, 15, 13, 9, 6, 14, 7, 6, 6, 31, 9, 13, 10, 7, 8, 9, 12, 15, 31, 21, 10, 28, 15, 9, 16, 21, 12, 27, 12, 91, 19, 15, 14, 45, 21, 12, 22, 14, 13, 18, 24, 62, 19, 31, 18, 49, 27, 15, 18, 15, 20, 45, 30, 14, 31, 24, 52, 127, 21, 18, 34, 21, 24, 18
Offset: 1

Views

Author

Henry Bottomley, Jul 21 2000

Keywords

Comments

Numerator of arithmetic mean of the divisors of n. - Jaroslav Krizek, Apr 26 2010
The average order of a(n)/A057021(n) is asymptotic to n/sqrt(log(n)); see the Bateman et al. link or the Sutantyo link. - Charles R Greathouse IV, May 17 2012

Examples

			a(12) = 14 since the 6 factors of 12 are 1, 2, 3, 4, 6 and 12 and 1 + 2 + 3 + 4 + 6 + 12 = 28 and 28/6 = 14/3.
		

References

  • V. I. Arnold, Dynamics, Statistics, and Projective Geometry of Galois Fields, Cambridge University Press, Cambridge, 2011, p. 78.

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a057020 n = numerator $ a000203 n % a000005 n
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Maple
    with(numtheory): seq(numer(sigma(n)/tau(n)), n=1..70) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Numerator[Table[(Plus @@ Divisors[n])/Length[Divisors[n]], {n, 70}]] (* Alonso del Arte, Feb 24 2006 *)
    Table[Numerator[DivisorSigma[1,n]/DivisorSigma[0,n]],{n,100}] (* Harvey P. Dale, Dec 19 2023 *)
  • PARI
    a(n)=numerator(sigma(n)/numdiv(n)) \\ Charles R Greathouse IV, May 17 2012
    
  • SageMath
    [numerator(sigma(n, 1)/sigma(n, 0)) for n in range(1, 71)] # Stefano Spezia, Jul 18 2025

Formula

a(n) = A057021(n) * A000203(n)/A000005(n) = A000203(n)/A009205(n) = (A057022(n) + A054025(n)/A000005(n)) * A057021(n).
Sum_{k=1..n} a(k)/A057021(k) ~ c * n^2 /sqrt(log(n)), where c = A308051. - Amiram Eldar, Apr 15 2025

A324990 a(n) = the smallest number k such that floor(sigma(k)/tau(k)) = n, or 0 if no such number k exists.

Original entry on oeis.org

1, 3, 5, 7, 0, 11, 13, 21, 17, 19, 40, 23, 34, 39, 29, 31, 63, 46, 37, 57, 41, 43, 76, 47, 0, 99, 53, 74, 0, 59, 61, 93, 86, 67, 116, 71, 73, 111, 125, 79, 175, 83, 171, 121, 89, 122, 0, 141, 97, 0, 101, 103, 0, 107, 109, 188, 113, 250, 0, 158, 169, 183, 166
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2019

Keywords

Comments

Floor(sigma(n)/tau(n)) = floor(A000203(n)/A000005(n)) = A057022(n) for n >= 1.
Odd primes are terms.
a(n) = 0 for numbers n = 5, 25, 29, 47, 50, 53, 59, 83, 89, ...

Examples

			For n = 4; number 7 is the smallest number k with floor(sigma(k)/tau(k)) = 4; floor(sigma(7)/tau(7)) = floor(8/2) = 4.
		

Crossrefs

Programs

  • Magma
    Ax:=func; [Ax(n): n in[1..80]]
  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for k from 1 to N^2 do
      v:= floor(numtheory:-sigma(k)/numtheory:-tau(k));
      if v <= N and V[v]=0 then V[v]:= k fi
    od:
    convert(V,list); # Robert Israel, Sep 13 2020

A324991 a(n) = the largest number k such that floor(sigma(k)/tau(k)) = n, or 0 if no such number k exists.

Original entry on oeis.org

2, 4, 8, 12, 0, 18, 24, 21, 30, 36, 40, 48, 45, 60, 56, 72, 63, 84, 90, 75, 96, 120, 108, 112, 0, 144, 110, 140, 0, 180, 160, 156, 136, 67, 116, 210, 240, 200, 198, 252, 175, 224, 208, 225, 288, 228, 0, 360, 336, 0, 172, 315, 0, 330, 272, 420, 294, 306, 0, 396
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2019

Keywords

Comments

Floor(sigma(n)/tau(n)) = floor(A000203(n)/A000005(n)) = A057022(n) for n >= 1.
a(n) = 0 for numbers n = 5, 25, 29, 47, 50, 53, 59, 83, 89, ...

Examples

			For n = 4; number 12 is the largest number k with floor(sigma(k)/tau(k)) = 4; floor(sigma(12)/tau(12)) = floor(28/6) = 4.
		

Crossrefs

Programs

  • Magma
    [Max([n: n in[1..10^5] | Floor(SumOfDivisors(n)/ NumberOfDivisors(n)) eq k]): k in [1..4]] cat [0] cat [Max([n: n in[1..10^5] | Floor(SumOfDivisors(n)/ NumberOfDivisors(n)) eq k]): k in [6..24]];
Showing 1-5 of 5 results.