cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A336722 a(n) = gcd(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 3, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 8, 1, 2, 3, 4, 1, 2, 1, 1, 1, 2, 1, 8, 1, 8, 1, 2, 1, 12, 1, 4, 1, 1, 1, 8, 1, 2, 1, 8, 1, 3, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 4, 1, 4, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 1, 3, 1, 1, 8, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2020

Keywords

Comments

a(n) = tau(n) for numbers n: 1, 6, 14, 22, 30, 38, 42, 46, 54, 56, 60, 62, 66, 70, 78, 86, 94, 96, 102, ...

Examples

			a(6) = gcd(tau(6), sigma(6), pod(6)) = gcd(4, 12, 36) = 4.
		

Crossrefs

Cf. A009205 (gcd(tau(n), sigma(n))), A306671 (gcd(tau(n), pod(n))), A306682 (gcd(sigma(n), pod(n))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A007955 (pod(n)), A336723 (lcm(tau(n), sigma(n), pod(n))).
Cf. A277521 (numbers k such that a(k) = tau(k) and simultaneously A336723(k) = pod(k)).

Programs

  • Magma
    [GCD([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := GCD @@ {(d = DivisorSigma[0,n]), DivisorSigma[1, n], n^(d/2)}; Array[a, 100] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); \\ From A007955
    A336722(n) = gcd(A007955(n), gcd(numdiv(n), sigma(n))); \\ Antti Karttunen, Aug 10 2020

Formula

a(p) = 1 for p = primes (A000040).
a(n) = gcd(A007955(n), A009205(n)). - Antti Karttunen, Aug 10 2020

Extensions

Data section extended up to a(105) by Antti Karttunen, Aug 10 2020

A334663 a(n) = Sum_{d|n} gcd(sigma(d), pod(d)), where pod(k) is the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 2, 3, 2, 15, 2, 4, 3, 5, 2, 20, 2, 7, 6, 5, 2, 19, 2, 8, 4, 7, 2, 33, 3, 5, 4, 64, 2, 93, 2, 6, 6, 5, 4, 25, 2, 7, 4, 19, 2, 69, 2, 12, 10, 7, 2, 38, 3, 7, 12, 8, 2, 44, 4, 73, 4, 5, 2, 124, 2, 7, 6, 7, 4, 167, 2, 8, 6, 27, 2, 41, 2, 5, 8, 12, 4, 43, 2
Offset: 1

Views

Author

Jaroslav Krizek, May 07 2020

Keywords

Comments

Inverse Möbius transform of A306682. - Antti Karttunen, May 09 2020

Examples

			a(6) = gcd(sigma(1), pod(1)) + gcd(sigma(2), pod(2)) + gcd(sigma(3), pod(3)) + gcd(sigma(6), pod(6)) = gcd(1, 1) + gcd(3, 2) + gcd(4, 3) + gcd(12, 36) = 1 + 1 + 1 + 12 = 15.
		

Crossrefs

Cf. A334579 (Sum_{d|n} gcd(tau(d), sigma(d))), A334662 (Sum_{d|n} gcd(tau(d), pod(d))).
Cf. A000203 (sigma(n)), A007955 (pod(n)), A306682 (gcd(sigma(n), pod(n))).
Cf. A334731 (product instead of sum).

Programs

  • Magma
    [&+[GCD(&+Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • PARI
    a(n) = sumdiv(n, d, gcd(sigma(d), vecprod(divisors(d)))); \\ Michel Marcus, May 08 2020

Formula

a(p) = 2 for p = primes (A000040).

A334731 a(n) = Product_{d|n} gcd(sigma(d), pod(d)) where sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 12, 1, 1, 1, 2, 1, 48, 1, 4, 3, 1, 1, 36, 1, 4, 1, 4, 1, 576, 1, 2, 1, 224, 1, 5184, 1, 1, 3, 2, 1, 144, 1, 4, 1, 40, 1, 2304, 1, 16, 9, 4, 1, 2304, 1, 2, 9, 4, 1, 864, 1, 1792, 1, 2, 1, 995328, 1, 4, 1, 1, 1, 20736, 1, 4, 3, 128, 1, 5184, 1, 2
Offset: 1

Views

Author

Jaroslav Krizek, May 09 2020

Keywords

Examples

			a(6) = gcd(sigma(1), pod(1)) * gcd(sigma(2), pod(2)) * gcd(sigma(3), pod(3)) * gcd(sigma(6), pod(6)) = gcd(1, 1) * gcd(3, 2) * gcd(4, 3) * gcd(12, 36) = 1 * 1 * 1 * 12 = 12.
		

Crossrefs

Cf. A334729 (Product_{d|n} gcd(tau(d), sigma(d))), A334663 (Sum_{d|n} gcd(sigma(d), pod(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A306682 (gcd(sigma(n), pod(n))).

Programs

  • Magma
    [&*[GCD(&+Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := Product[GCD[DivisorSigma[1, d], d^(DivisorSigma[0, d]/2)], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 09 2020 *)
  • PARI
    pod(n) = vecprod(divisors(n));
    a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(sigma(d[k]), pod(d[k]))); \\ Michel Marcus, May 09-11 2020

Formula

a(p) = 1 for p = primes (A000040).

A324526 Numbers m such that gcd(sigma(m), pod(m)) = tau(m) where tau(k) = the number of divisors of k (A000005), sigma(k) = the sum of the divisors of k (A000203) and pod(n) = the product of divisors of k (A007955).

Original entry on oeis.org

1, 14, 22, 38, 46, 56, 62, 86, 94, 110, 118, 134, 142, 150, 158, 166, 184, 206, 214, 254, 262, 278, 286, 302, 326, 334, 342, 358, 374, 382, 398, 422, 430, 446, 454, 478, 486, 494, 502, 504, 526, 542, 566, 568, 612, 614, 622, 638, 646, 662, 670, 694, 718, 726
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Comments

Numbers n such that A306682(n) = A000005(n).

Examples

			14 is a term because gcd(sigma(14), pod(14)) = gcd(24, 196) = 4 = tau(14).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^5] | GCD(SumOfDivisors(n), &*[d: d in Divisors(n)]) eq NumberOfDivisors(n)]
    
  • PARI
    isok(n) = my(d=divisors(n)); gcd(vecsum(d), vecprod(d)) == #d; \\ Michel Marcus, Mar 05 2019

A324527 a(n) = the smallest number m such that gcd(sigma(m), pod(m)) = n where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 10, 15, 12, 95, 180, 91, 56, 51, 40, 473, 6, 117, 980, 135, 70, 1139, 90, 703, 290, 861, 26378, 3151, 54, 745, 468, 255, 2156, 5017, 26100, 775, 124, 1419, 2176, 4865, 96, 2701, 26714, 585, 190, 6683, 65268, 11051, 5632, 435, 144946, 13207, 42, 679, 5800
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Comments

a(n) = the smallest number m such that A306682(m) = n.

Examples

			For n=2; a(2) = 10 because gcd(sigma(10), pod(10)) = gcd (18, 100) = 2 and 10 is the smallest.
		

Crossrefs

Programs

  • Magma
    [Min([n: n in[1..10^5] | GCD(SumOfDivisors(n), &*[d: d in Divisors(n)]) eq k]): k in [1..45]]
    
  • PARI
    f(n) = my(d=divisors(n)); gcd(vecsum(d), vecprod(d)); \\ A306682
    a(n) = {my(k=1); while (f(k) != n, k++); k;} \\ Michel Marcus, Mar 05 2019
Showing 1-5 of 5 results.