cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A336723 a(n) = lcm(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 168, 30, 36, 56, 960, 351, 900, 132, 12096, 182, 1176, 1800, 158720, 306, 75816, 380, 168000, 14112, 4356, 552, 1658880, 11625, 14196, 29160, 65856, 870, 810000, 992, 2064384, 17424, 31212, 58800, 917070336, 1406, 21660, 85176, 23040000, 1722, 6223392
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2020

Keywords

Comments

a(n) = pod(n) for numbers n: 1, 6, 30, 66, 84, 102, 120, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, ...

Examples

			a(6) = lcm(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) = 36.
		

Crossrefs

Cf. A009278 (lcm(tau(n), sigma(n))), A324528 (lcm(tau(n), pod(n))), A324529 (lcm(sigma(n), pod(n))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A007955 (pod(n)), A336722 (gcd(tau(n), sigma(n), pod(n))).
Cf. A277521 (numbers k such that a(k) = pod(k) and simultaneously A336722(k) = tau(k)).

Programs

  • Magma
    [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := LCM @@ {(d = DivisorSigma[0,n]), DivisorSigma[1, n], n^(d/2)}; Array[a, 50] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); lcm([#d, vecsum(d), vecprod(d)]); \\ Michel Marcus, Aug 12 2020

Formula

a(p) = p^2 + p for p = primes (A000040).

A337323 a(n) = gcd(n, tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 23 2020

Keywords

Comments

GCD(n, tau(n), sigma(n), pod(n)) = GCD(n, tau(n), sigma(n)). - David A. Corneth, Aug 24 2020

Examples

			a(6) = gcd(6, tau(6), sigma(6), pod(6)) = gcd(6, 4, 12, 36) = 2.
		

Crossrefs

Cf. A336722 (gcd(tau(n), sigma(n), pod(n))).
Cf. A337324 (least m such that gcd(m, tau(m), sigma(m), pod(m)) = n).
Cf. A336723 (lcm(tau(n), sigma(n), pod(n))) = (lcm(n, tau(n), sigma(n), pod(n))).

Programs

  • Magma
    [GCD([n, #Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]]
    
  • Maple
    f:= proc(n) uses numtheory; igcd(n, tau(n), sigma(n)) end proc:
    map(f, [$1..100]); # Robert Israel, Sep 01 2020
  • Mathematica
    a[n_] := GCD @@ {n, DivisorSigma[0, n], DivisorSigma[1, n]}; Array[a, 100] (* Amiram Eldar, Aug 24 2020 *)
  • PARI
    a(n) = my(f=factor(n)); gcd([n, sigma(f), numdiv(f)]); \\ Michel Marcus, Apr 01 2021

Formula

a(p) = 1 for p = primes (A000040).
a(n) = 1 for n = p^k, p prime, k >= 0 (A000961). - Bernard Schott, Apr 01 2021

A329929 a(n) = lcm(tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 168, 30, 9, 56, 960, 351, 450, 132, 6048, 182, 294, 1800, 158720, 306, 25272, 380, 84000, 14112, 1089, 552, 414720, 11625, 7098, 29160, 32928, 870, 101250, 992, 2064384, 17424, 15606, 58800, 917070336, 1406, 5415, 85176, 11520000, 1722, 777924, 1892
Offset: 1

Views

Author

Jaroslav Krizek, Aug 31 2020

Keywords

Comments

a(n) is also lcm(n, tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)).

Examples

			a(6) = lcm(tau(6), sigma(6), pod(6)) / gcd(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) / gcd(4, 12, 36) = 36 / 4 = 9.
		

Crossrefs

Cf. A334985 (lcm(n, tau(n), sigma(n), pod(n)) / gcd(n, tau(n), sigma(n), pod(n))).

Programs

  • Magma
    [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]) / GCD([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := LCM @@ (t = {(d = DivisorSigma[0, n]), n^(d/2), DivisorSigma[1, n]}) / GCD @@ t; Array[a, 50] (* Amiram Eldar, Aug 31 2020 *)
  • PARI
    a(n) = my(f=factor(n), v=[numdiv(f), sigma(f), vecprod(divisors(f))]); lcm(v)/gcd(v); \\ Michel Marcus, Aug 31 2020

Formula

a(n) = lcm(n, tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)).
a(n) = A336723(n) / A336722(n).
a(p) = p * (p+1) for p = primes.

A334985 a(n) = lcm(n, tau(n), sigma(n), pod(n)) / gcd(n, tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 168, 30, 18, 56, 960, 351, 450, 132, 6048, 182, 588, 1800, 158720, 306, 25272, 380, 84000, 14112, 2178, 552, 414720, 11625, 7098, 29160, 32928, 870, 405000, 992, 2064384, 17424, 15606, 58800, 917070336, 1406, 10830, 85176, 11520000, 1722, 3111696
Offset: 1

Views

Author

Jaroslav Krizek, Sep 22 2020

Keywords

Examples

			a(6) = lcm(6, tau(6), sigma(6), pod(6)) / gcd(6, tau(6), sigma(6), pod(6))  = lcm(6, 4, 12, 36) / gcd(6, 4, 12, 36) = 36 / 2 = 18.
		

Crossrefs

Cf. A329929 (lcm(tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n))).

Programs

  • Magma
    [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]) / GCD([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]]
    
  • Mathematica
    a[n_] := LCM @@ {(d = DivisorSigma[0, n]), (s = DivisorSigma[1, n]), n^(d/2)} / GCD @@ {n, d, s}; Array[a, 50] (* Amiram Eldar, Sep 22 2020 *)
  • PARI
    a(n) = my(f=factor(n), v=[n, numdiv(f), sigma(f), vecprod(divisors(f))]); lcm(v)/gcd(v); \\ Michel Marcus, Sep 22 2020

Formula

a(n) = lcm(tau(n), sigma(n), pod(n)) / gcd(n, tau(n), sigma(n)).
a(n) = A336723(n) / A337323(n).

A337325 a(n) is the smallest number m such that gcd(tau(m), sigma(m), pod(m)) = n where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 10, 18, 6, 5000, 90, 66339, 30, 288, 3240, 10036224, 60, 582160384, 20412, 16200, 168, 49030215219, 612, 4637065216, 1520, 142884, 912384, 98881718827959, 420, 7543125, 479232, 14112, 5824, 26559758051835904, 104400, 25796647321600, 840, 491774976, 1268973568
Offset: 1

Views

Author

Jaroslav Krizek, Aug 23 2020

Keywords

Comments

p^(q-1) | a(q). If p != q then (p^(q-1) * q) | a(q) for some primes p and q. A similar idea can be used for nonprime q. - David A. Corneth, Aug 25 2020

Examples

			For n = 6; a(6) = 90 because 90 is the smallest number with gcd(tau(90), sigma(90), pod(90)) = gcd(12, 234, 531441000000) = 6.
		

Crossrefs

Cf. A336722 (gcd(tau(n), sigma(n), pod(n))).
Cf. A337324 (least m such that gcd(m,tau(m),sigma(m),pod(m)) = n).

Programs

  • Magma
    [Min([m: m in[1..10^5] | GCD([#Divisors(m), &+Divisors(m), &*Divisors(m)]) eq k]): k in [1..10]]
    
  • PARI
    f(n) = my(d=divisors(factor(n))); gcd([#d, vecsum(d), vecprod(d)]);
    a(n) = my(m=1); while (f(m) != n, m++); m; \\ Michel Marcus, Sep 21 2020

Extensions

a(11) and a(13) from Amiram Eldar, Aug 25 2020
More terms from Jinyuan Wang, Oct 03 2020

A338406 Numbers m such that tau(m), sigma(m) and pod(m) are pairwise relatively prime.

Original entry on oeis.org

1, 4, 16, 25, 64, 81, 100, 121, 256, 289, 484, 529, 729, 841, 1024, 1156, 1296, 1600, 1681, 1936, 2116, 2209, 2401, 2809, 3025, 3364, 3481, 4096, 4624, 5041, 5184, 6400, 6724, 6889, 7225, 7921, 8464, 8836, 10201, 11236, 11449, 11664, 12100, 12769, 13225, 13456
Offset: 1

Views

Author

Jaroslav Krizek, Oct 24 2020

Keywords

Comments

Numbers m such that A336723(m) = A000005(m) * A000203(m) * A007955(m).
Numbers m such that lcm(m, tau(m), sigma(m), pod(m)) = tau(m) * sigma(m) * pod(m).
Subsequence of numbers m such that A336722(m) = gcd(tau(m), sigma(m), pod(m)) = 1.
From David A. Corneth, Dec 11 2020: (Start)
a(n) is a perfect square. Proof: If a(n) is not a perfect square but is even then both tau(a(n)) and pod(a(n)) are divisible by 2. Contradiction.
If a(n) is not a perfect square and is odd then both tau(a(n)) and sigma(a(n)) are even. Contradiction.
Hence if a(n) is not a perfect square then it can be neither even nor odd. So a(n) is a perfect square. Q.E.D. (End)

Examples

			lcm(tau(4), sigma(4), pod(4)) = lcm(3, 7, 8) = tau(4) * sigma(4) * pod(4) = 3 * 7 * 8 = 168.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A007955 (pod).

Programs

  • Magma
    [m: m in [1..10^5] | LCM([#Divisors(m), &+Divisors(m), &*Divisors(m)]) eq #Divisors(m) * &+Divisors(m) * &*Divisors(m)]
    
  • Mathematica
    Select[Range[15000], CoprimeQ[(d = DivisorSigma[0, #]), (s = DivisorSigma[1, #])] && CoprimeQ[d, (p = #^(d/2))] && CoprimeQ[s, p] &] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    isok(m) = my(d=divisors(m), t=#d, s=vecsum(d), p=vecprod(d)); t*s*p == lcm([t,s,p]); \\ Michel Marcus, Oct 25 2020
Showing 1-6 of 6 results.