cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A329929 a(n) = lcm(tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 168, 30, 9, 56, 960, 351, 450, 132, 6048, 182, 294, 1800, 158720, 306, 25272, 380, 84000, 14112, 1089, 552, 414720, 11625, 7098, 29160, 32928, 870, 101250, 992, 2064384, 17424, 15606, 58800, 917070336, 1406, 5415, 85176, 11520000, 1722, 777924, 1892
Offset: 1

Views

Author

Jaroslav Krizek, Aug 31 2020

Keywords

Comments

a(n) is also lcm(n, tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)).

Examples

			a(6) = lcm(tau(6), sigma(6), pod(6)) / gcd(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) / gcd(4, 12, 36) = 36 / 4 = 9.
		

Crossrefs

Cf. A334985 (lcm(n, tau(n), sigma(n), pod(n)) / gcd(n, tau(n), sigma(n), pod(n))).

Programs

  • Magma
    [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]) / GCD([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := LCM @@ (t = {(d = DivisorSigma[0, n]), n^(d/2), DivisorSigma[1, n]}) / GCD @@ t; Array[a, 50] (* Amiram Eldar, Aug 31 2020 *)
  • PARI
    a(n) = my(f=factor(n), v=[numdiv(f), sigma(f), vecprod(divisors(f))]); lcm(v)/gcd(v); \\ Michel Marcus, Aug 31 2020

Formula

a(n) = lcm(n, tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n)).
a(n) = A336723(n) / A336722(n).
a(p) = p * (p+1) for p = primes.
Showing 1-1 of 1 results.