cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 116 results. Next

A300230 Restricted growth sequence transform of A286570, combining A009194(n) and A046523(n), i.e., gcd(n,sigma(n)) and the prime signature of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 6, 8, 9, 2, 10, 2, 11, 12, 6, 2, 13, 3, 6, 5, 14, 2, 15, 2, 16, 8, 6, 12, 17, 2, 6, 12, 18, 2, 15, 2, 7, 10, 6, 2, 19, 3, 20, 8, 11, 2, 21, 12, 22, 12, 6, 2, 23, 2, 6, 20, 24, 12, 15, 2, 11, 8, 25, 2, 26, 2, 6, 20, 7, 12, 15, 2, 27, 9, 6, 2, 28, 12, 6, 8, 29, 2, 30, 31, 7, 12, 6, 32, 33, 2, 20, 10, 17, 2, 15, 2, 34, 35
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A009194(n) = gcd(n, sigma(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from A046523
    A286570(n) = (1/2)*(2 + ((A046523(n)+A009194(n))^2) - A046523(n) - 3*A009194(n));
    write_to_bfile(1,rgs_transform(vector(65537,n,A286570(n))),"b300230.txt");

A355925 Square array A(n, k) = A009194(A246278(n, k)), read by falling antidiagonals.

Original entry on oeis.org

1, 1, 1, 6, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 15, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2022

Keywords

Examples

			The top left corner of the array:
   k=  1  2  3  4  5  6  7  8  9 10  11  12 13  14 15 16 17 18  19  20 21
  2k=  2  4  6  8 10 12 14 16 18 20  22  24 26  28 30 32 34 36  38  40 42
-----+-----------------------------------------------------------------------
   1 | 1, 1, 6, 1, 2, 4, 2, 1, 3, 2,  2, 12, 2, 28, 6, 1, 2, 1,  2, 10, 6,
   2 | 1, 1, 3, 1, 1, 3, 3, 1, 1, 1,  1, 15, 3,  3, 3, 1, 1, 1,  3,  1, 3,
   3 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 5,  1, 1, 1, 1, 1,  5,  1, 7,
   4 | 1, 1, 1, 1, 7, 1, 1, 1, 7, 7,  1,  1, 1,  1, 7, 1, 1, 7,  1,  7, 1,
   5 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1, 19, 1, 1, 1, 1,  1,  1, 1,
   6 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 17, 1,  1, 1, 1, 1, 1,  1,  1, 1,
   7 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
   8 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
   9 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  11 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 37, 1,  1, 1, 1, 1, 1, 31,  1, 1,
  12 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  13 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  15 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1, 61, 1, 1, 1, 1,  1,  1, 1,
  16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  17 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  18 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  19 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  20 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  21 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
		

Crossrefs

Cf. also A341605, A341606, A341607, A341608, A341626, A341627, A355924, A355927 for related arrays of similar construction.

Programs

  • PARI
    up_to = 105;
    A009194(n) = gcd(n, sigma(n));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A355925sq(row,col) = A009194(A246278sq(row,col));
    A355925list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A355925sq(col,(a-(col-1))))); (v); };
    v355925 = A355925list(up_to);
    A355925(n) = v355925[n];

Formula

A(n, k) = A009194(A246278(n, k)).
A(n, k) = gcd(A246278(n,k), A355927(n, k)).
A(n, k) = A355927(n, k) / A341605(n, k).
A(n, k) = A246278(n, k) / A341606(n, k).

A300231 Filter sequence combining A001065(n) and A009194(n), the sum of proper divisors of n and gcd(n,sigma(n)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 19, 25, 2, 13, 26, 27, 2, 28, 2, 29, 30, 31, 2, 32, 33, 34, 12, 35, 2, 36, 26, 37, 38, 39, 2, 40, 2, 41, 42, 43, 44, 45, 2, 46, 47, 48, 2, 49, 2, 50, 51, 52, 44, 53, 2, 54, 55, 56, 2, 57, 38, 35, 30, 58, 2, 59, 60, 32, 61, 62, 63, 64
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of P(A001065(n), A009194(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Examples

			a(27) = a(35) (= 19) because A001065(27) = A001065(35) = 13 and A009194(27) = A009194(35) = 1.
		

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A001065(n) = (sigma(n)-n);
    A009194(n) = gcd(n, sigma(n));
    Aux300231(n) = (1/2)*(2 + ((A001065(n)+A009194(n))^2) - A001065(n) - 3*A009194(n));
    write_to_bfile(1,rgs_transform(vector(65537,n,Aux300231(n))),"b300231.txt");

A300233 Filter sequence combining A051953(n) and A009194(n), cototient of n and gcd(n,sigma(n)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 13, 2, 15, 16, 17, 14, 18, 2, 19, 2, 20, 21, 22, 23, 24, 2, 25, 26, 27, 2, 28, 2, 29, 30, 31, 2, 32, 33, 34, 35, 36, 2, 37, 26, 38, 39, 40, 2, 41, 2, 42, 43, 44, 45, 46, 2, 47, 48, 49, 2, 50, 2, 51, 52, 53, 45, 54, 2, 55, 43, 56, 2, 57, 39, 58, 59, 60, 2, 61, 62, 60, 63, 55, 64, 65, 2, 66
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of P(A051953(n), A009194(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Examples

			a(20) = a(22) (= 13) because A051953(20) = A051953(22) = 12 and A009194(20) = A009194(22) = 2.
		

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A009194(n) = gcd(n, sigma(n));
    A051953(n) = (n - eulerphi(n));
    Aux300233(n) = (1/2)*(2 + ((A051953(n)+A009194(n))^2) - A051953(n) - 3*A009194(n));
    write_to_bfile(1,rgs_transform(vector(65537,n,Aux300233(n))),"b300233.txt");

A324396 a(1) = 0; for n > 1, a(n) = A009194(A156552(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 3, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 12, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 3, 2, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 10, 1, 1, 1, 6, 1, 1, 1, 12, 5, 6, 15, 1, 3, 3, 1, 2, 3, 4, 5, 1, 1, 2, 3, 1, 3, 1, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A009194(A156552(n)).
a(n) = gcd(A156552(n), A323243(n)).

A326194 Number of iterations of x -> A009194(x) needed to reach a fixed point when starting from x = n, where A009194(x) = gcd(x, sigma(x)).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2019

Keywords

Crossrefs

Cf. A000203, A007691 (positions of zeros), A009194, A326195, A326196.

Programs

  • PARI
    A326194(n) = { my(u=gcd(n,sigma(n))); if(u==n,0,1+A326194(u)); };

Formula

If gcd(n,sigma(n)) = n, then a(n) = 0, otherwise a(n) = 1 + a(gcd(n,sigma(n))).
a(n) < A326196(n).

A331744 Lexicographically earliest infinite sequence such that a(i) = a(j) => A009194(i) = A009194(j) and A323901(i) = A323901(j) for all i, j.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 5, 1, 6, 7, 8, 9, 3, 10, 11, 1, 12, 13, 14, 7, 15, 16, 17, 18, 19, 7, 17, 20, 6, 21, 22, 1, 23, 24, 25, 6, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 9, 30, 19, 37, 7, 15, 38, 39, 40, 41, 42, 14, 43, 41, 44, 22, 1, 45, 46, 47, 24, 48, 49, 50, 13, 51, 52, 53, 54, 55, 56, 57, 7, 58, 59, 60, 61, 62, 63, 64, 33, 65, 66, 67, 68, 69, 70, 71, 18, 69, 30, 72, 19
Offset: 1

Views

Author

Antti Karttunen, Feb 04 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A009194(n), A323901(n)].

Crossrefs

Programs

  • PARI
    \\ Needs also code from A323901.
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A009194(n) = gcd(n, sigma(n));
    Aux331744(n) = [A009194(n),A323901(n)];
    v331744 = rgs_transform(vector(up_to, n, Aux331744(n)));
    A331744(n) = v331744[n];

Formula

a(2^n) = 1 for all n >= 0.

A324389 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A009194(n), A318458(n)] for all other numbers, except f(1) = -1.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 2, 2, 5, 3, 6, 3, 7, 8, 2, 3, 9, 3, 10, 3, 11, 3, 12, 2, 13, 14, 15, 3, 16, 3, 2, 17, 18, 3, 19, 3, 11, 3, 20, 3, 21, 3, 22, 23, 7, 3, 6, 2, 24, 25, 26, 3, 27, 28, 29, 28, 30, 3, 31, 3, 32, 33, 2, 3, 34, 3, 18, 17, 35, 3, 36, 3, 5, 3, 37, 3, 38, 3, 39, 2, 18, 3, 40, 41, 11, 17, 42, 3, 43, 44, 45, 3, 46, 47, 12, 3, 48, 23, 49, 3, 50, 3
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Comments

For all i, j:
A324401(i) = A324401(j) => a(i) = a(j).
Regarding the scatter plot of this sequence, see also comments in A318310. - Antti Karttunen, Feb 04 2020

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A009194(n) = gcd(n,sigma(n));
    A318458(n) = bitand(n,sigma(n)-n);
    Aux324389(n) = if(1==n,-1,[A009194(n), A318458(n)]);
    v324389 = rgs_transform(vector(up_to,n,Aux324389(n)));
    A324389(n) = v324389[n];

A300242 Filter sequence combining gcd(n,sigma(n)) and gcd(n,phi(n)), (A009194 and A009195).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 5, 6, 1, 7, 1, 6, 8, 9, 1, 10, 1, 11, 5, 6, 1, 12, 13, 6, 14, 15, 1, 3, 1, 16, 8, 6, 1, 17, 1, 6, 5, 18, 1, 19, 1, 7, 20, 6, 1, 21, 22, 23, 8, 11, 1, 24, 13, 25, 5, 6, 1, 26, 1, 6, 14, 27, 1, 3, 1, 11, 8, 6, 1, 28, 1, 6, 13, 7, 1, 19, 1, 29, 30, 6, 1, 31, 1, 6, 8, 32, 1, 33, 34, 7, 5, 6, 35, 36, 1, 37, 20, 38, 1, 3, 1, 39, 20
Offset: 1

Views

Author

Antti Karttunen, Mar 02 2018

Keywords

Comments

Restricted growth sequence transform of P(A009194(n), A009195(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Examples

			a(15) = a(33) (= 8) because A009194(15) = A009194(33) = 3 and A009195(15) = A009195(33) = 1.
a(20) = a(52) (= 11) because A009194(20) = A009194(52) = 2 and A009195(20) = A009195(52) = 4.
		

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A009194(n) = gcd(n, sigma(n));
    A009195(n) = gcd(n, eulerphi(n));
    Aux300242(n) = (1/2)*(2 + ((A009194(n)+A009195(n))^2) - A009194(n) - 3*A009195(n));
    write_to_bfile(1,rgs_transform(vector(65537,n,Aux300242(n))),"b300242.txt");

A324394 a(n) = A009194(A005940(1+n)), where A005940 is the Doudna sequence and A009194(n) = gcd(n,sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 3, 4, 1, 3, 1, 1, 1, 2, 1, 2, 1, 6, 3, 12, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 3, 28, 1, 6, 1, 10, 1, 2, 3, 12, 1, 18, 15, 4, 1, 1, 3, 1, 1, 6, 1, 3, 1, 2, 3, 4, 1, 3, 1, 1, 1, 2, 1, 4, 1, 6, 3, 8, 7, 2, 3, 28, 1, 6, 1, 2, 1, 2, 3, 28, 1, 6, 3, 120, 1, 2, 1, 6, 1, 90, 3, 12, 1, 1, 1, 7, 1, 6, 3, 5, 7, 2
Offset: 0

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

  • PARI
    A324394(n) = { my(m1=1,m2=1,p=2,mp=p*p); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, m1 *= p; if(3==(n%4),mp *= p,m2 *= (mp-1)/(p-1))); n>>=1); gcd(m1,m2); };
    
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A009194(n) = gcd(n, sigma(n));
    A324394(n) = A009194(A005940(1+n));

Formula

a(n) = A009194(A005940(1+n)) = gcd(A005940(1+n), A324054(n)).
Showing 1-10 of 116 results. Next