A324818 Lexicographically earliest sequence such that a(i) = a(j) => A009194(i) = A009194(j) and A324396(i) = A324396(j) for all i, j.
1, 2, 2, 2, 2, 3, 2, 2, 4, 5, 2, 6, 2, 5, 7, 8, 2, 9, 2, 5, 8, 10, 2, 11, 12, 5, 13, 14, 2, 3, 2, 2, 7, 5, 13, 2, 2, 5, 4, 15, 2, 3, 2, 6, 7, 5, 2, 6, 16, 2, 7, 5, 2, 3, 2, 17, 4, 5, 2, 11, 2, 10, 13, 2, 13, 18, 2, 5, 7, 5, 2, 9, 2, 5, 13, 6, 19, 3, 2, 5, 4, 5, 2, 14, 16, 20, 21, 22, 2, 23, 24, 6, 13, 10, 25, 26, 2, 2, 7, 8, 2, 18, 2, 5, 21
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
- Index entries for sequences related to binary expansion of n
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences related to sigma(n)
Programs
-
PARI
up_to = 10000; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A009194(n) = gcd(n, sigma(n)); A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 A324396(n) = gcd(A156552(n),A323243(n)); \\ Needs code also from A323243 v324818 = rgs_transform(vector(up_to,n,[A009194(n), A324396(n)])); A324818(n) = v324818[n];
Comments