A324874 a(n) is the binary length of A324398(n), where A324398(n) = A156552(n) AND (A323243(n) - A156552(n)).
0, 0, 0, 1, 0, 1, 0, 1, 3, 0, 0, 1, 0, 1, 4, 4, 0, 1, 0, 1, 5, 1, 0, 1, 0, 1, 4, 1, 0, 1, 0, 1, 0, 1, 5, 4, 0, 1, 7, 1, 0, 1, 0, 1, 3, 1, 0, 1, 0, 0, 2, 1, 0, 1, 6, 1, 9, 1, 0, 1, 0, 1, 3, 6, 0, 1, 0, 1, 0, 1, 0, 5, 0, 1, 5, 1, 6, 1, 0, 1, 4, 1, 0, 1, 8, 1, 11, 1, 0, 6, 7, 1, 0, 1, 9, 5, 0, 0, 7, 5, 0, 1, 0, 1, 6
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
- Index entries for sequences related to binary expansion of n
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences related to sigma(n)
Programs
-
PARI
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 A324398(n) = { my(k=A156552(n)); bitand(k,(A323243(n)-k)); }; \\ Needs also code from A323243. A324874(n) = #binary(A324398(n));
Comments