cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A324874 a(n) is the binary length of A324398(n), where A324398(n) = A156552(n) AND (A323243(n) - A156552(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 3, 0, 0, 1, 0, 1, 4, 4, 0, 1, 0, 1, 5, 1, 0, 1, 0, 1, 4, 1, 0, 1, 0, 1, 0, 1, 5, 4, 0, 1, 7, 1, 0, 1, 0, 1, 3, 1, 0, 1, 0, 0, 2, 1, 0, 1, 6, 1, 9, 1, 0, 1, 0, 1, 3, 6, 0, 1, 0, 1, 0, 1, 0, 5, 0, 1, 5, 1, 6, 1, 0, 1, 4, 1, 0, 1, 8, 1, 11, 1, 0, 6, 7, 1, 0, 1, 9, 5, 0, 0, 7, 5, 0, 1, 0, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 27 2019

Keywords

Crossrefs

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A324398(n) = { my(k=A156552(n)); bitand(k,(A323243(n)-k)); }; \\ Needs also code from A323243.
    A324874(n) = #binary(A324398(n));

Formula

If A324398(n) = 0, a(n) = 0, otherwise a(n) = A070939(A324398(n)) = 1 + A000523(A324398(n)).
a(n) = A324868(n) + A324881(n).
a(p) = 0 for all primes p.
Showing 1-1 of 1 results.