cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A324055 Deficiency of Doudna-sequence: a(n) = A033879(A005940(1+n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 5, 1, 6, 2, 6, -4, 19, -3, 14, 1, 10, 4, 10, -2, 22, -12, 12, -12, 41, 7, 26, -19, 94, -12, 41, 1, 12, 8, 18, 0, 38, -12, 22, -10, 58, -4, 18, -48, 102, -54, 30, -28, 109, 25, 66, -17, 148, -72, 47, -51, 286, 32, 126, -64, 469, -39, 122, 1, 16, 10, 22, 4, 46, -12, 42, -8, 70, 4, 42, -56, 178, -60, 58, -26, 118, 20
Offset: 0

Views

Author

Antti Karttunen, Feb 14 2019

Keywords

Comments

Both here and in the mirror image sequence A324185, the lowermost (asinh) scatter plot shows on the y = 0 line the numbers that correspond to the perfect numbers. Compare also to the scatter plot of A243492.

Crossrefs

See A106737, A290077, A323915, A324052, A324054, A324056, A324057, A324058, A324114, A324335, A324340, A324348, A324349, A324394, A324395 for other sequences as permuted by A005940, and compare their scatter plots.

Programs

  • Mathematica
    Array[Block[{p = Partition[Split[Join[IntegerDigits[#, 2], {2}]], 2]}, 2 # - DivisorSigma[1, #] &[Times @@ Flatten@ Table[Prime[Count[Flatten@ #, 0] + 1]^#[[1, 1]] &@ Take[p, -i], {i, Length[p]}]]] &, 82, 0] (* Michael De Vlieger, Mar 11 2019, after Robert G. Wilson v at A005940 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A033879(n) = (2*n-sigma(n));
    A324055(n) = A033879(A005940(1+n));
    
  • PARI
    A324055(n) = { my(m1=2,m2=1,p=2,mp=p*p); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, m1 *= p; if(3==(n%4),mp *= p,m2 *= (mp-1)/(p-1))); n>>=1); (m1-m2); };

Formula

a(n) = A033879(A005940(1+n)).
a(n) = 2*A005940(1+n) - A324054(n).
For n > 0, a(n) = A324185(A054429(n)).
a(n) = A324348(n) + A000120(A005940(1+n)).

A324396 a(1) = 0; for n > 1, a(n) = A009194(A156552(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 3, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 12, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 3, 2, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 10, 1, 1, 1, 6, 1, 1, 1, 12, 5, 6, 15, 1, 3, 3, 1, 2, 3, 4, 5, 1, 1, 2, 3, 1, 3, 1, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A009194(A156552(n)).
a(n) = gcd(A156552(n), A323243(n)).

A324395 a(n) = A017666(A005940(1+n)), where A005940 is the Doudna sequence and A017666(n) = n/gcd(n,sigma(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 9, 8, 7, 5, 5, 3, 25, 6, 27, 16, 11, 7, 21, 10, 35, 5, 15, 2, 49, 50, 75, 36, 125, 9, 81, 32, 13, 11, 11, 1, 55, 7, 63, 4, 77, 35, 35, 5, 175, 5, 9, 12, 121, 98, 49, 100, 245, 25, 225, 24, 343, 125, 125, 27, 625, 54, 243, 64, 17, 13, 39, 11, 65, 11, 33, 7, 13, 55, 55, 3, 275, 21, 189, 40, 143, 77, 77, 5, 385, 35, 105, 1, 539
Offset: 0

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

  • PARI
    A324395(n) = { my(m1=1,m2=1,p=2,mp=p*p); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, m1 *= p; if(3==(n%4),mp *= p,m2 *= (mp-1)/(p-1))); n>>=1); m1/gcd(m1,m2); };
    
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A017666(n) = (n/gcd(n, sigma(n)));
    A324395(n) = A017666(A005940(1+n));

Formula

a(n) = A017666(A005940(1+n)) = A005940(1+n) / A324394(n).

A324544 a(n) = A009194(A250246(n)) = gcd(A250246(n), A324545(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 3, 10, 1, 6, 1, 4, 1, 2, 1, 4, 1, 1, 1, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 18, 1, 2, 15, 2, 1, 3, 1, 2, 3, 4, 1, 6, 1, 2, 3, 2, 1, 4, 1, 2, 3, 4, 1, 3, 1, 4, 1, 2, 1, 12, 1, 1, 1, 1, 1, 6, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 06 2019

Keywords

Comments

Fixed points are: 1, 6, 28, 120, 496, 8128, etc,
Positions where a(n) == A250246(n) are: 1, 6, 28, 120, 496, 864, 8128, 11424, 15240, ..., which is sequence A250245(A007691(n)) sorted into ascending order.

Crossrefs

Differs from A009194 for the first time at n=39. Here a(39) = 3.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A055396(n) = if(1==n,0,primepi(A020639(n)));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k)));
    A009194(n) = gcd(n, sigma(n));
    A324544(n) = A009194(A250246(n));

Formula

a(n) = A009194(A250246(n)) = gcd(A250246(n), A324545(n)).
a(n) = A324394(A252754(n)).
Showing 1-4 of 4 results.