cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A007691 Multiply-perfect numbers: n divides sigma(n).

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1

Views

Author

Keywords

Comments

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer. - Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite. - T. D. Noe, Nov 04 2007
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070. - Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP. - Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n-1 is in A066175 then a(n) is a triangular number. - Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiply-perfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiply-perfect number is practical. - Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0. - Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiply-perfect numbers n > 1). - Jaroslav Krizek, May 28 2014
The only terms m > 1 of this sequence that are not in A145551 are m for which sigma(m)/m is not a divisor of m. Conjecture: after 1, A323653 lists all such m (and no other numbers). - Antti Karttunen, Mar 19 2021

Examples

			120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.

Crossrefs

Complement is A054027. Cf. A000203, A054030.
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Cf. A069926, A330746 (left inverses, when applied to a(n) give n).
Cf. (other related sequences) A007539, A066135, A066961, A093034, A094467, A134639, A145551, A019278, A194771 [= 2*a(n)], A219545, A229110, A262432, A335830, A336849, A341608.

Programs

  • Haskell
    a007691 n = a007691_list !! (n-1)
    a007691_list = filter ((== 1) . a017666) [1..]
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
    Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
    (* Third program: *)
    Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return sigma(n, 1)%n == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021

Extensions

More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021

A015706 Odd numbers k that divide phi(k)*sigma(k).

Original entry on oeis.org

1, 117, 135, 775, 819, 891, 1521, 1701, 2325, 3159, 3375, 4455, 5733, 6875, 6975, 10935, 11907, 19773, 20625, 20925, 22113, 22275, 24025, 40131, 41067, 43875, 44375, 49005, 61875, 62775, 68607, 72075, 75625, 83349, 84375, 85293
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A011775.

Programs

  • Mathematica
    Select[Range[1,85301,2],Divisible[EulerPhi[#]DivisorSigma[1,#],#]&] (* Harvey P. Dale, Aug 27 2013 *)
  • PARI
    isok(n) = (n%2) && !(sigma(n)*eulerphi(n) % n); \\ Michel Marcus, Oct 02 2017

A228104 Numbers of form 2^(2i-1)*3^j, with i,j > 0.

Original entry on oeis.org

6, 18, 24, 54, 72, 96, 162, 216, 288, 384, 486, 648, 864, 1152, 1458, 1536, 1944, 2592, 3456, 4374, 4608, 5832, 6144, 7776, 10368, 13122, 13824, 17496, 18432, 23328, 24576, 31104, 39366, 41472, 52488, 55296, 69984, 73728, 93312, 98304, 118098, 124416, 157464, 165888
Offset: 1

Views

Author

Ralf Stephan, Aug 10 2013

Keywords

Crossrefs

Subsequence of A033845 and A011775.

Programs

  • Maple
    N:= 10^6: # for terms <= N
    sort([seq(seq(2^i * 3^j, j = 1 .. ilog[3](N/2^i)),i=1..ilog2(N/3),2)]); # Robert Israel, Oct 14 2024
  • Mathematica
    With[{max = 2*10^5}, Flatten[Table[2^(2*i-1)*3^j, {i, 1, (Log2[max]+1)/2}, {j, 1, Log[3, max/2^(2*i-1)]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)
  • PARI
    vecsort(vector(10000,n,2^(2*((n-1)%100)+1)*3^((n\100)+1))) /* (first 100 values) */

Formula

Sum_{n>=1} 1/a(n) = 1/3. - Amiram Eldar, Mar 29 2025

A055196 Primitive numbers k that divide sigma(k)*phi(k).

Original entry on oeis.org

6, 28, 40, 117, 135, 496, 775, 891, 1701, 2176, 5632, 6875, 8128, 18688, 23552, 26624, 44375, 88723, 89667, 91136, 274625, 352256, 557375, 628849, 722701, 796797, 1071875, 1200663, 1288625, 1358127, 1512875, 2246503, 2473984, 2490368, 2896363, 2909375
Offset: 1

Views

Author

Robert G. Wilson v, Jun 30 2000

Keywords

Comments

Terms from A011775 that are not a multiple of a previous term. - Michel Marcus, Dec 21 2013

Crossrefs

Cf. A011775.

Extensions

Extended using A011775 b-file by Michel Marcus, Dec 21 2013

A066993 Integer of the form phi(n)*sigma(n)/n.

Original entry on oeis.org

1, 4, 13, 20, 24, 36, 40, 65, 64, 84, 112, 96, 128, 121, 171, 186, 200, 216, 168, 208, 192, 273, 312, 340, 392, 364, 480, 448, 456, 496, 612, 605, 576, 640, 768, 768, 840, 880, 840, 936, 960, 1105, 992, 1200, 1093, 1280, 1464, 1364, 1152, 1539, 1152, 1664, 1482
Offset: 1

Views

Author

Benoit Cloitre, Jan 27 2002

Keywords

Crossrefs

Cf. A011775.

Programs

  • Mathematica
    Select[Table[EulerPhi[n] DivisorSigma[1,n]/n,{n,2000}],IntegerQ] (* Harvey P. Dale, Mar 17 2020 *)
  • PARI
    { n=0; for (m=1, 10^10, if ((a=eulerphi(m)*sigma(m)/m) % 1.0 == 0 , write("b066993.txt", n++, " ", a); if (n==1000, return)) ) } \\ Harry J. Smith, Apr 16 2010

Formula

a(n) = sigma(A011775(n))*phi(A011775(n))/A011775(n).

Extensions

Missing term a(43)=992 and new term a(53)=1482 added by Harry J. Smith, Apr 16 2010

A066994 Numbers k such that phi(k) divides k*sigma(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 24, 26, 27, 30, 32, 35, 36, 39, 40, 42, 48, 54, 55, 56, 60, 63, 64, 70, 72, 78, 80, 84, 88, 96, 98, 104, 105, 108, 110, 114, 116, 120, 125, 126, 128, 135, 140, 144, 147, 150, 155, 156, 160, 162, 165, 168, 189, 190, 192
Offset: 1

Views

Author

Benoit Cloitre, Jan 27 2002

Keywords

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A011775.
Subsequences: A007694, A020492.

Programs

  • Mathematica
    Select[Range[200],Divisible[# DivisorSigma[1,#],EulerPhi[#]]&] (* Harvey P. Dale, Aug 23 2019 *)
  • PARI
    isok(k) = { (k*sigma(k)) % eulerphi(k) == 0 } \\ Harry J. Smith, Apr 23 2010

Extensions

Missing term a(7)=10 added by Harry J. Smith, Apr 23 2010

A066995 Numbers k such that sigma(k) divides k*phi(k).

Original entry on oeis.org

1, 6, 15, 28, 84, 95, 140, 182, 190, 248, 270, 287, 308, 357, 420, 455, 477, 496, 570, 672, 744, 819, 840, 910, 1199, 1428, 1488, 1547, 1638, 1722, 1848, 1892, 2295, 2398, 2480, 2660, 2730, 3339, 3417, 3472, 3515, 3596, 3640, 3720, 3780, 3956, 4064, 4095
Offset: 1

Views

Author

Benoit Cloitre, Jan 27 2002

Keywords

Crossrefs

Programs

  • GAP
    Filtered([1..10^5], n ->  n*Phi(n) mod Sigma(n) = 0); # Muniru A Asiru, Jan 31 2018
  • Mathematica
    Select[Range[4500],Divisible[# EulerPhi[#],DivisorSigma[1,#]]&]  (* Harvey P. Dale, Mar 19 2011 *)
  • PARI
    isok(n) = frac(n*eulerphi(n)/sigma(n)) == 0; \\ Michel Marcus, Jan 31 2018
    

A067575 Numbers k that divide phi(k)*bigomega(k).

Original entry on oeis.org

1, 4, 12, 16, 18, 27, 64, 80, 96, 144, 200, 216, 256, 324, 448, 486, 500, 672, 729, 768, 1008, 1024, 1152, 1250, 1512, 1568, 1728, 2268, 2352, 2560, 2592, 3125, 3402, 3528, 3888, 4096, 5103, 5292, 5488, 5832, 6144, 6400, 7938, 8232
Offset: 1

Views

Author

Benoit Cloitre, Jan 30 2002

Keywords

Comments

All powers of 4 (A000302) are in the sequence.

Crossrefs

Programs

  • Mathematica
    Select[Range[8300],Mod[EulerPhi[#]PrimeOmega[#],#]==0&] (* Harvey P. Dale, Oct 23 2024 *)

A047630 Numbers k that divide sigma(k) * phi(k) and are not divisible by 6.

Original entry on oeis.org

1, 28, 40, 117, 135, 196, 200, 224, 496, 640, 775, 819, 891, 1000, 1372, 1521, 1550, 1568, 1701, 1792, 2176, 2325, 2480, 3100, 3159, 3200, 3375, 3724, 4455, 5000, 5632, 5733, 6200, 6860, 6875, 6975, 8128, 9604, 10240, 10880, 10935, 10976, 11907
Offset: 1

Views

Author

Robert G. Wilson v, Jul 22 2000

Keywords

References

  • George E. Andrews, "Number Theory," Dover Books, NY, 1971, Page 84.

Crossrefs

Cf. A011775.

Programs

  • Mathematica
    Do[ If[ Mod[ n, 6 ]!=0, If[ Mod[ DivisorSigma[ 1, n ]*EulerPhi[ n ], n ]==0, Print[ n ] ] ], {n, 1, 25000} ]

A274205 Numbers such that the sum of divisors is twice the sum of the exponential divisors.

Original entry on oeis.org

6, 24, 54, 216, 1638, 6552, 14256, 55860, 80262, 276822, 321048, 502740, 1107288, 1396500, 1724976, 12568500, 13564278, 20165460, 54257112, 168836850, 181489140, 504136500, 675347400, 4537228500, 28533427650, 60950102850, 114133710600, 162252212850, 243800411400, 649008851400, 734916514878
Offset: 1

Views

Author

Paolo P. Lava, Jun 13 2016

Keywords

Comments

All terms appear to be multiples of 6.
a(32) > 10^12. If p*r is a term, where p is prime and r is not divisible by p, then p^3*r is also a term. - Giovanni Resta, Jun 15 2016

Examples

			Divisors of 6 are 1, 2, 3 and 6 which sum to 12. The only exponential divisor is 6. Finally 12 / 6 = 2.
Divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24 which sum to 60. Exponential divisors are 6, 24 and their sum is 30. Finally 60 / 30 = 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,d,j,k,n,ok;
    for n from 2 to q do a:=ifactors(n)[2]; b:=sort([op(divisors(n))]); c:=0;
    for k from 2 to nops(b) do d:=ifactors(b[k])[2]; if nops(d)=nops(a) then
    ok:=1; for j from 1 to nops(d) do if not type(a[j][2]/d[j][2],integer) then ok:=0; break; fi; od;
    if ok=1 then c:=c+b[k]; fi;  fi; od; if sigma(n)=2*c  then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range[10^6], 2 Times @@ Map[Sum[First[#]^d, {d, Divisors@ Last@ #}] &, FactorInteger@ #] == DivisorSigma[1, #] &] (* Michael De Vlieger, Jun 16 2016 *)

Extensions

a(16)-a(31) from Giovanni Resta, Jun 15 2016
Showing 1-10 of 10 results.