cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 195 results. Next

A325023 Multi-perfect numbers m from A007691 such that m*(m-tau(m))/sigma(m) is an integer h, where k-tau(k) is the number of nondivisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 6, 28, 496, 672, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 1379454720, 8589869056, 14182439040, 43861478400, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 13661860101120, 181742883469056, 6088728021160320
Offset: 1

Views

Author

Jaroslav Krizek, Mar 24 2019

Keywords

Comments

Numbers m such that sigma(m)/m is an integer f and simultaneously m*tau(m)/sigma(m) is an integer g. Corresponding values of integers f: 1, 2, 2, 2, 3, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, ... Corresponding values of integers g: 0, 1, 11, 243, 216, 4057, 7536, 8166, ...
Complement of A325024 with respect to A007691.
Even perfect numbers from A000396 are terms.
Intersection of A325020 and A007691.
Conjecture: Numbers m such that all values of sigma(m)/m, m*tau(m)/sigma(m) and m*(m-tau(m))/sigma(m) are any integers (f, g, and h respectively). Corresponding values of integers f: 1, 2, 2, 2, 3, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, ... Corresponding values of integers g: 0, 1, 11, 243, 216, 4057, 7536, 8166, ... Corresponding values of integers h: 1, 2, 3, 5, 8, 7, 24, 24, 54, 80, 13, 96, ...

Examples

			Multi-perfect number 28 is a term because 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
    
  • Mathematica
    Select[Range[10^6], And[Mod[#3, #1] == 0, IntegerQ[#1 (#1 - #2)/#3]] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    isok(m) = my(s=sigma(m)); (frac(m*(m-numdiv(m))/s) == 0) && (frac(s/m) == 0); \\ Michel Marcus, Mar 25 2019

A325024 Multiply-perfect numbers m from A007691 such that m*(m-tau(m))/sigma(m) is not an integer where k-tau(k) is the number of the non-divisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

120, 523776, 459818240, 1476304896, 31998395520, 51001180160, 518666803200, 30823866178560, 740344994887680, 796928461056000, 212517062615531520, 69357059049509038080, 87934476737668055040, 170206605192656148480, 1161492388333469337600, 1802582780370364661760
Offset: 1

Views

Author

Jaroslav Krizek, May 12 2019

Keywords

Comments

Numbers m such that m divides sigma(m) but sigma(m) does not divide m*(m-tau(m)).
Complement of A325023 with respect to A007691.

Examples

			120 is a term because 120*(120-tau(120))/sigma(120) = 120*(120-16)/360 = 104/3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | not IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
    
  • Mathematica
    Select[Range[10^6], And[Mod[#3, #1] == 0, !IntegerQ[#1 (#1 - #2)/#3]] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Amiram Eldar, Jul 10 2019 after Michael De Vlieger at A325023 *)
  • PARI
    isA325024(m) = { my(s=sigma(m)); ((1==denominator(s/m)) && (1!=denominator(m*(m-numdiv(m))/s))); }; \\ Antti Karttunen, May 25 2019

A134740 Number of distinct prime factors in the n-th multiply perfect number A007691(n).

Original entry on oeis.org

0, 2, 2, 3, 2, 3, 2, 4, 5, 4, 6, 5, 2, 5, 6, 6, 7, 5, 2, 7, 7, 6, 6, 6, 2, 7, 7, 7, 6, 8, 8, 8, 8, 6, 7, 8, 8, 9, 7, 8, 2, 9, 9, 9, 11, 10, 9, 10, 10, 8, 9, 11, 10, 10, 8, 11, 11, 10, 10, 11, 11, 9, 11, 9, 12, 11, 13, 13, 12, 11, 12, 12, 11, 13, 12, 12, 12, 11, 12, 13, 12, 11, 10, 13, 12, 11, 10
Offset: 1

Views

Author

T. D. Noe, Nov 07 2007

Keywords

Comments

If a multiply perfect number k has abundancy m = sigma(k)/k, then k must have at least A005579(m) distinct prime factors.

Crossrefs

Cf. A007691.

A153800 Indices of perfect numbers (A000396) in the sequence of multiply-perfect numbers (A007691).

Original entry on oeis.org

2, 3, 5, 7, 13, 19, 25, 41, 110, 192, 229, 294
Offset: 1

Views

Author

Omar E. Pol, Jan 13 2009

Keywords

Comments

The sequence contains no further entries between 294 and 1600. - R. J. Mathar, May 26 2011

Examples

			a(7) is 25 because the 25th multiply-perfect number A007691(25)=137438691328 is also the 7th perfect number A000396(7).
		

Crossrefs

A325025 Numbers that are multi-perfect (A007691) and simultaneously harmonic (A001599).

Original entry on oeis.org

1, 6, 28, 496, 672, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 8589869056, 14182439040, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 13661860101120
Offset: 1

Views

Author

Jaroslav Krizek, Mar 24 2019

Keywords

Comments

Multi-perfect numbers from A007691 that are harmonic numbers (A001599). Complement of A325026 with respect to A001599.
Harmonic numbers from A001599 that are multi-perfect numbers (A007691). Complement of A140798 with respect to A007691.
Numbers m such that sigma(m)/m is an integer g and simultaneously m*tau(m)/sigma(m) is an integer h, where tau(k) is the number of the divisors of k (A000005) and sigma(k) is the sum of the divisors of k (A000203). Corresponding values of integers g: 1, 2, 2, 2, 3, 2, 4, 4, 4, 4, 2, 4, 4, 3, 4, 2, 5, ... Corresponding values of integers h: 1, 2, 3, 5, 8, 7, 24, 24, 54, 80, 13, 96, 120, ...
Even perfect numbers from A000396 are terms.

Examples

			28 is a term because 28*tau(28)/sigma(28) = 28*6/56 = 3 (integer) and simultaneously 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
		

Crossrefs

A325021 and A325023 are closely related sequences. - N. J. A. Sloane, May 03 2019

Programs

  • Magma
    [n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n)) * n / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
    
  • Mathematica
    Select[Range[10^6], And[Mod[DivisorSigma[1, #], #] == 0, IntegerQ@ HarmonicMean@ Divisors@ #] &] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    isok(n) = my(s=sigma(n)); !frac(s/n) && !frac(n*numdiv(n)/s); \\ Michel Marcus, Mar 24 2019

A342659 The least prime that does not divide the n-th multiply perfect number: a(n) = A053669(A007691(n)).

Original entry on oeis.org

2, 5, 3, 7, 3, 5, 3, 11, 11, 5, 11, 7, 3, 7, 5, 3, 11, 5, 3, 13, 11, 7, 3, 7, 3, 11, 5, 11, 5, 13, 11, 5, 11, 11, 7, 7, 5, 13, 5, 5, 3, 11, 5, 11, 23, 11, 11, 11, 11, 11, 11, 23, 11, 13, 7, 13, 23, 11, 5, 5, 13, 5, 11, 5, 17, 17, 17, 17, 17, 17, 17, 17, 13, 17, 17, 11, 19, 11, 23, 19, 11, 5, 7, 11, 5, 7, 17, 17, 7, 7, 5
Offset: 1

Views

Author

Antti Karttunen, Mar 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Map[Block[{k = 1}, While[Mod[#, Prime[k]] == 0, k++]; Prime[k]] &, Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] ] (* or, using the b-file at A007691: *)
    Map[Block[{k = 1}, While[Mod[#, Prime[k]] == 0, k++]; Prime[k]] &, DeleteCases[Import["https://oeis.org/A007691/b007691.txt", "Data"], ?(Length@ # == 0 &)][[1 ;; 91, -1]] ] (* _Michael De Vlieger, Mar 19 2021 *)

Formula

a(n) = A053669(A007691(n)).

A134665 Exponent of highest power of 2 dividing the n-th multiply perfect number A007691.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 5, 3, 9, 2, 9, 12, 7, 9, 8, 8, 13, 16, 7, 7, 10, 14, 13, 18, 14, 13, 11, 5, 10, 10, 8, 11, 11, 7, 7, 14, 15, 5, 9, 30, 11, 8, 17, 15, 11, 11, 14, 20, 20, 20, 15, 21, 19, 25, 19, 15, 17, 17, 17, 22, 25, 20, 25, 19, 19, 19, 27, 19, 19, 27, 17, 19, 27, 19, 21, 23, 20
Offset: 1

Views

Author

T. D. Noe, Nov 05 2007

Keywords

Comments

The large terms, for example at n=41, correspond to the perfect numbers A000396 in A007691. See A134666 for the number of multiply perfect numbers having a given highest exponent of 2.

Crossrefs

Formula

a(n) = A007814(A007691(n)). - Michel Marcus, Oct 10 2017

A342658 Number of prime factors in the n-th multiply perfect number, counted with multiplicity: a(n) = bigomega(A007691(n)).

Original entry on oeis.org

0, 2, 3, 5, 5, 7, 7, 10, 8, 12, 9, 15, 13, 14, 15, 13, 14, 17, 17, 17, 18, 18, 19, 20, 19, 20, 20, 21, 16, 21, 22, 18, 24, 26, 22, 19, 24, 29, 19, 22, 31, 29, 21, 32, 31, 26, 28, 28, 33, 35, 34, 34, 37, 37, 35, 34, 35, 35, 36, 33, 38, 38, 37, 39, 42, 42, 39, 46, 40, 42, 48, 39, 38, 46, 40, 40, 47, 41, 44, 46, 43, 39
Offset: 1

Views

Author

Antti Karttunen, Mar 19 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A001222(A007691(n)).
a(n) >= A134740(n).

A342660 The largest prime that divides the n-th multiply perfect number: a(n) = A006530(A007691(n)); a(1) = 1.

Original entry on oeis.org

1, 3, 7, 5, 31, 7, 127, 7, 13, 31, 19, 31, 8191, 31, 31, 73, 73, 127, 131071, 19, 19, 89, 151, 127, 524287, 151, 127, 31, 127, 89, 89, 127, 61, 17, 3851, 1093, 151, 257, 911, 331, 2147483647, 3851, 911, 127, 257, 1093, 331, 331, 337, 337, 337, 257, 683, 3851, 8191, 1093, 257, 911, 3851, 1093, 178481, 8191, 337, 8191
Offset: 1

Views

Author

Antti Karttunen, Mar 19 2021

Keywords

Crossrefs

Cf. A000668, A072002 (subsequences), A006530, A007691.
Cf. also A134740, A342658, A342659.

Programs

Formula

a(n) = A006530(A007691(n)).

A320024 The odd part of those numbers which divide the sum of their divisors (A007691).

Original entry on oeis.org

1, 3, 7, 15, 31, 21, 127, 945, 4095, 1023, 544635, 46035, 8191, 355725, 279279, 1796165, 5388495, 180213, 131071, 110800305, 249987465, 42833475, 3112865, 8109585, 524287, 9338595, 49198149, 253255275, 22017975903, 13341660255, 30101431815, 709933138551
Offset: 1

Views

Author

Peter Luschny, Oct 03 2018

Keywords

Comments

The data was derived from the data in A007691.
The Mersenne primes A000668 are a subsequence; in fact a prime is in this sequence if and only if it is a Mersenne prime.
Note that John Voight's 'spoof odd perfect number' 22017975903 is included. - Peter Luschny, Oct 30 2020

Crossrefs

Programs

  • Maple
    a_list := proc(len) local L, n; L := NULL; for n from 1 to len do
    if numtheory:-sigma(n) mod n = 0 then L := L, n/2^padic[ordp](n, 2) fi od; L end:
  • Mathematica
    A007691 = Select[Range[1000000], Divisible[DivisorSigma[1, #], #] &]; Table[A007691[[n]]/2^IntegerExponent[A007691[[n]], 2], {n, 1, Length[A007691]}] (* Vaclav Kotesovec, Oct 14 2018 *)

Formula

a(n) = A000265(A007691(n)).
Showing 1-10 of 195 results. Next