A153802 a(n) = A153800(n) - A000040(n).
0, 0, 0, 0, 2, 6, 8, 22, 87, 163, 198, 257
Offset: 1
Extensions
a(11)-a(12) from Jinyuan Wang, Mar 01 2020
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a007691[m_] := Block[{f = 0, i = 1}, While[f < m, If[Divisible[DivisorSigma[1, i], i], ++f]; ++i;]; Return[i - 1]] a153800[n_] := Block[{i = 2, j, f = 0}, While[f < n, j = a007691[i]; If[PerfectNumberQ[j], ++f;]; ++i]; Return[i - 1]] a[n_] := a153800[n] - MersennePrimeExponent[n] a /@ Range[1, 4] (* Julien Kluge, Dec 15 2016 *)
6 is perfect because 6 = 1+2+3, the sum of all divisors of 6 less than 6; 28 is perfect because 28 = 1+2+4+7+14.
a000396 n = a000396_list !! (n-1) a000396_list = [x | x <- [1..], a000203 x == 2 * x] -- Reinhard Zumkeller, Jan 20 2012
Select[Range[9000], DivisorSigma[1,#]== 2*# &] (* G. C. Greubel, Oct 03 2017 *) PerfectNumber[Range[15]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2018 *)
isA000396(n) = (sigma(n) == 2*n);
from sympy import divisor_sigma def ok(n): return n > 0 and divisor_sigma(n) == 2*n print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Mar 12 2022
With[{max = 48}, MersennePrimeExponent[Range[max]] - Prime[Range[max]]] (* Amiram Eldar, Oct 21 2024 *)
With[{max = 48}, (MersennePrimeExponent[Range[max]] - Prime[Range[max]]) / 2] (* Amiram Eldar, Oct 21 2024 *)
Comments