cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alexandra Hercilia Pereira Silva

Alexandra Hercilia Pereira Silva's wiki page.

Alexandra Hercilia Pereira Silva has authored 1 sequences.

A319524 a(n) is the smallest number that belongs simultaneously to the two arithmetic progressions prime(n) + m*prime(n+1) and prime(n+1) + m*prime(n+2), m >= 1, n >= 1.

Original entry on oeis.org

8, 33, 40, 128, 115, 302, 226, 226, 835, 401, 734, 1718, 1030, 842, 3121, 3475, 1401, 2339, 5108, 1969, 3233, 2486, 6491, 9692, 10298, 5560, 11552, 6211, 4177, 7987, 6022, 18763, 16678, 21893, 8001, 25585, 13523, 9682, 30961, 32035, 7057, 36089, 19105, 39002, 7162, 47041, 50163, 51752
Offset: 1

Author

Keywords

Comments

Construct a table T in which T(m,n) = prime(n) + m*prime(n+1) as shown below. Then a(n) is defined as the smallest number appearing both in column n and column n+1, so a(1)=8, a(2)=33, a(3)=40, etc.
.
m\n| 1 2 3 4 5 6 7 8 ...
----+--------------------------------------------------
1 | 5 --8 12 18 24 30 36 42 ...
|
2 | 8-- 13 19 29 37 47 55 65 ...
|
3 | 11 18 26 40 50 64 74 88 ...
| /
4 | 14 23 33 / 51 63 81 93 111 ...
| / /
5 | 17 28 / 40- 62 76 98 112 134 ...
| /
6 | 20 33- 47 73 89 115 131 157 ...
| /
7 | 23 38 54 84 102 / 132 150 180 ...
| /
8 | 26 43 61 95 115 149 169 203 ...
|
9 | 29 48 68 106 128 166 188 226 ...
| / /
10 | 32 53 75 117 / 141 183 207 / 249 ...
| / /
11 | 35 58 82 128 154 200 226 272 ...
|
12 | 38 63 89 139 167 217 245 295 ...
|
13 | 41 68 96 150 180 234 264 318 ...
|
14 | 44 73 103 161 193 251 283 341 ...
|
15 | 47 78 110 172 206 268 302 364 ...
| /
16 | 50 83 117 183 219 285 / 321 387 ...
| /
17 | 53 88 124 194 232 302 340 410 ...
|
... |... ... ... ... ... ... ... ... ...
Conjectures:
1. There are infinitely many pairs of consecutive equal terms. (Note that the first pair is (a(7), a(8)).)
2. There exists no N such that the sequence is monotonic for n > N.
From Amiram Eldar, Sep 22 2018: (Start)
Theorem 1: The intersection of the two mentioned arithmetic progressions is always nonempty.
Corollary: The sequence is infinite. (End)
Sequences that derive from this:
1. Positions in {s(n)} at which a(n) occurs: (2,6,5,11,8,17,19,...).
2. Positions in {s(n+1)} at which a(n) occurs: (1,4,3,9,6,15,15,...).
3. Differences between these two sequences: (1,2,2,2,2,4,...).

Programs

  • GAP
    P:=Filtered([1..10000],IsPrime);;
    T:=List([1..Length(P)-1],n->List([1..Length(P)-1],m->P[n]+m*P[n+1]));;
    a:=List([1..50],k->Minimum(List([1..Length(T)-1],i->Intersection(T[i],T[i+1]))[k])); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    a[n_]:=ChineseRemainder[{Prime[n],Prime[n+1]},{Prime[n+1],Prime[n+2]} ];Array[a,44] (* Amiram Eldar, Sep 22 2018 *)

Extensions

Table from Jon E. Schoenfield, Sep 23 2018
More terms from Amiram Eldar, Sep 22 2018