cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A015707 Values of n where (phi(n) * sigma(n))/n is an integer and increases.

Original entry on oeis.org

1, 6, 18, 24, 28, 40, 54, 72, 96, 117, 135, 196, 200, 216, 224, 288, 360, 384, 468, 496, 600, 640, 756, 775, 864, 891, 1000, 1080, 1152, 1372, 1488, 1521, 1568, 1701, 1792, 1944, 2016, 2160, 2176, 2480, 2592, 3100, 3159, 3200, 3375, 3456, 3744, 4320, 4455, 4608
Offset: 1

Views

Author

Keywords

Comments

This sequence is infinite since there are infinitely many numbers m with an arbitrarily large integer value of (phi(m) * sigma(m))/m. For example, if m = 2 * 3^k, then this value is (3^(k+1)-1)/2. - Amiram Eldar, Dec 05 2018

Crossrefs

Cf. A015706.

Programs

  • Mathematica
    seq = {}; rm = 0; Do[r = EulerPhi[n]*DivisorSigma[1, n]/n; If[IntegerQ[r] && r > rm, rm = r; AppendTo[seq, n]], {n, 1, 5000}]; seq (* Amiram Eldar, Dec 05 2018 *)

Extensions

Title improved by Sean A. Irvine, Dec 05 2018
a(1)=1 inserted and more terms added by Amiram Eldar, Dec 05 2018

A386871 Least k such that A056100(k) = n or -1 if no such k exists.

Original entry on oeis.org

6, 124357252657, 4, 33, 8, 145, 9, 37063859, 16, 51, 26, 1441, 15, 2353, 34, 69, 20, 1011377103546119, 27, 7201, 25, 87, 115, 9911837, 56, 385, 58, 45, 62, 86125529, 57, 30721, 35, 123, 74, 295, 90, 15686608811, 82, 141, 86, 70561, 49, 77857739, 94, 159, 329, 34884199
Offset: 1

Views

Author

Michel Marcus, Aug 06 2025

Keywords

Comments

Wanted terms: a(18), a(38), a(72), a(80).
a(38) = 15686608811 (found by Tomas Rokicki), a(80) = 4222433393407, and a(18), a(72) > 6*10^12. - Giovanni Resta, Aug 09 2025
a(72) > a(18). - Martin Ehrenstein, Aug 10 2025

Crossrefs

Cf. A056100, A386856 (odd bisection), A015706.

Programs

  • Mathematica
    a[n_]:=Module[{k=0},Until[Mod[DivisorSigma[1, k]*EulerPhi[k] + 1, k]==n,k++];k] (* James C. McMahon, Aug 06 2025 *)

Extensions

a(2) from Tomas Rokicki, Aug 05 2025
a(18) from Martin Ehrenstein, Aug 10 2025
a(19)-a(37) from Hugo Pfoertner, Aug 11 2025
a(38) from Tomas Rokicki, Aug 09 2025
More terms from Hugo Pfoertner, Aug 11 2025
Showing 1-2 of 2 results.