cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A079458 Number of Gaussian integers in a reduced system modulo n.

Original entry on oeis.org

1, 2, 8, 8, 16, 16, 48, 32, 72, 32, 120, 64, 144, 96, 128, 128, 256, 144, 360, 128, 384, 240, 528, 256, 400, 288, 648, 384, 784, 256, 960, 512, 960, 512, 768, 576, 1296, 720, 1152, 512, 1600, 768, 1848, 960, 1152, 1056, 2208, 1024, 2352, 800, 2048, 1152, 2704
Offset: 1

Views

Author

Vladeta Jovovic, Jan 14 2003

Keywords

Comments

Number of units in the ring consisting of the Gaussian integers modulo n. - Jason Kimberley, Dec 07 2015

Examples

			{1, i, 1+2i, 2+i, 3, 3i, 3+2i, 2+3i} is the set of eight units in the Gaussian integers modulo 4. - _Jason Kimberley_, Dec 07 2015
		

Crossrefs

Equals four times A218147. - Jason Kimberley, Nov 14 2015
Sequences giving the number of solutions to the equation GCD(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), this sequence ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319445.

Programs

  • Magma
    A079458 := func)>; // Jason Kimberley, Nov 14 2015
    
  • Maple
    with(GaussInt): seq(GIphi(n), n=1..100);
  • Mathematica
    phi[1]=1;phi[p_, s_] := Which[Mod[p, 4] == 3, p^(2 s - 2) (p^2 - 1), Mod[p, 4] == 1, p^(2 s - 2) ((p - 1))^2, True, 2^(2 s - 1)];phi[n_] := Product[phi[FactorInteger[n][[i, 1]], FactorInteger[n][[i, 2]]], {i, Length[FactorInteger[n]]}];Table[phi[n], {n, 1, 33}] (* José María Grau Ribas, Mar 16 2014 *)
    f[p_, e_] := (p - 1)*p^(2*e - 1) * If[p == 2, 1, 1 - (-1)^((p-1)/2)/p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 13 2024 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2, r*=2^(2*e-1));
            if(p%4==1, r*=(p-1)^2*p^(2*e-2));
            if(p%4==3, r*=(p^2-1)*p^(2*e-2));
        );
        return(r);
    } \\ Jianing Song, Sep 16 2018

Formula

Multiplicative with a(2^e) = 2^(2*e-1), a(p^e) = (p^2-1)*p^(2*e-2) if p mod 4=3 and a(p^e) = (p-1)^2*p^(2*e-2) if p mod 4=1.
a(n) = A003557(n)^2 * a(A007947(n)), where a(2)=2, a(p)=(p-1)^2 for prime p=1(mod 4), a(p)=p^2-1 for prime p=3(mod 4), and a(n*m)=a(n)*a(m) for n coprime to m. - Jason Kimberley, Nov 16 2015
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-2) * (1 - 1/2^(s-1)) * Product_{p prime > 2} (1 - 1/p^(s-1) - (-1)^((p-1)/2)*(p-1)/p^s).
Sum_{k=1..n} a(k) = c * n^3 / 3 + O(n^2 * log(n)), where c = (3/4) * Product_{p prime > 2} (1 - 1/p^2 - (-1)^((p-1)/2)*(p-1)/p^3) = (3/4) * A334427 * Product_{p prime == 1 (mod 4)} (1 - 2/p^2 + 1/p^3) = 0.6498027559... (Calderón et al., 2015). (End)
a(n) = A204617(n)*A062570(n). - Ridouane Oudra, Jun 05 2024

A239442 a(n) = phi(n^7).

Original entry on oeis.org

1, 64, 1458, 8192, 62500, 93312, 705894, 1048576, 3188646, 4000000, 17715610, 11943936, 57921708, 45177216, 91125000, 134217728, 386201104, 204073344, 846825858, 512000000, 1029193452, 1133799040, 3256789558, 1528823808, 4882812500, 3706989312, 6973568802, 5782683648, 16655052988
Offset: 1

Views

Author

Keywords

Comments

Number of solutions of the equation gcd(x_1^2 + ... + x_7^2, n)=1 with 0 < x_i <= n.

Crossrefs

Defining Phi_k(n):= number of solutions of the equation gcd(x_1^2 + ... + x_k^2, n) = 1 with 0 < x_i <= n.
Phi_1(n) = phi(n) = A000010.
Phi_2(n) = A079458.
Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191.
Phi_4(n) = A227499.
Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533.
Phi_6(n) = A238534.
Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442.
Phi_8(n) = A239441.
Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443.

Programs

Formula

a(n) = n^6*phi(n).
Dirichlet g.f.: zeta(s - 7) / zeta(s - 6). The n-th term of the Dirichlet inverse is n^6 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega=A001221. - Álvar Ibeas, Nov 24 2017
Sum_{k=1..n} a(k) ~ 3*n^8 / (4*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^8 - p^7 - p + 1)) = 1.01646280485545934937... - Amiram Eldar, Dec 06 2020

A239443 a(n) = phi(n^9), where phi = A000010.

Original entry on oeis.org

1, 256, 13122, 131072, 1562500, 3359232, 34588806, 67108864, 258280326, 400000000, 2143588810, 1719926784, 9788768652, 8854734336, 20503125000, 34359738368, 111612119056, 66119763456, 305704134738, 204800000000, 453874312332, 548758735360, 1722841676182, 880602513408, 3051757812500
Offset: 1

Views

Author

Keywords

Comments

Number of solutions of the equation GCD(x_1^2 + ... + x_9^2,n)=1 with 0 < x_i <= n.
In general, for m>0, Sum_{k=1..n} phi(k^m) ~ 6 * n^(m+1) / ((m+1)*Pi^2). - Vaclav Kotesovec, Feb 02 2019

Crossrefs

Defining Phi_k(n):= number of solutions of the equation GCD(x_1^2 + ... + x_k^2,n)=1 with 0 < x_i <= n.
Phi_1(n) = phi(n) = A000010(n).
Phi_2(n) = A079458(n).
Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191(n).
Phi_4(n) = A227499(n).
Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533(n).
Phi_6(n) = A238534(n).
Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442(n).
Phi_8(n) = A239441(n).
Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443(n).

Programs

Formula

Dirichlet g.f.: zeta(s - 9) / zeta(s - 8). The n-th term of the Dirichlet inverse is n^8 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega = A001221. - Álvar Ibeas, Nov 24 2017
a(n) = n^8 * phi(n). - Altug Alkan, Mar 10 2018
Sum_{k=1..n} a(k) ~ 3*n^10 / (5*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^10 - p^9 - p + 1)) = 1.00399107654133714629... - Amiram Eldar, Dec 06 2020

A238534 Number of solutions to gcd(u^2 + v^2 + w^2 + x^2 + y^2 + z^2, n) = 1 with u, v, w, x, y, z in [0,n-1].

Original entry on oeis.org

1, 32, 504, 2048, 12400, 16128, 101136, 131072, 367416, 396800, 1611720, 1032192, 4453488, 3236352, 6249600, 8388608, 22713088, 11757312, 44576280, 25395200, 50972544, 51575040, 141611184, 66060288, 193750000, 142511616, 267846264, 207126528, 574288624
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local i, j, k, S1, S2,  S4,  S6,G;
      G:= select(t -> igcd(t,n)=1, [$1..n-1]);
      S1:= Array(0..n-1);
      for i from 0 to n-1 do j:= i^2 mod n; S1[j]:= S1[j]+1; od;
      S2:= Array(0..n-1);
      for i from 0 to n-1 do
        for j from 0 to n-1 do
          k:= i^2 + j mod n;
          S2[k]:= S2[k]+S1[j];
      od od:
      S4:= Array(0..n-1);
      for i from 0 to n-1 do
        for j from 0 to n-1 do
          k:= i + j mod n;
          S4[k]:= S4[k]+S2[i]*S2[j];
      od od:
      S6:= Array(0..n-1);
      for i from 0 to n-1 do
        for j from 0 to n-1 do
          k:= i + j mod n;
          S6[k]:= S6[k]+S4[i]*S2[j];
      od od:
      add(S6[i],i=G);
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Mar 05 2018
  • Mathematica
    g[n_, 6] := g[n, 6] = Sum[If[GCD[u^2+v^2+w^2+x^2+y^2+z^2, n] == 1, 1, 0], {u, n}, {v, n}, {w, n}, {x, n}, {y, n}, {z, n}]; Table[g[n, 6], {n, 1, 12}]
    f[p_, e_] := (p - 1)*p^(6*e - 4)*(p^3 - (-1)^(3*(p - 1)/2)); f[2, e_] := 2^(6*e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Sep 07 2023 *)
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^6)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)))} \\ Andrew Howroyd, Aug 06 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p==2, 2^(6*e-1), (p - 1)*p^(6*e - 4)*(p^3 - (-1)^(3*(p-1)/2))))} \\ Andrew Howroyd, Aug 07 2018

Formula

Multiplicative with a(2^e) = 2^(6*e-1), a(p^e) = (p - 1)*p^(6*e - 4)*(p^3 - (-1)^(3*(p-1)/2)) for odd prime p. - Andrew Howroyd, Aug 07 2018
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-6) * (1 - 1/2^(s-5)) * Product_{p prime > 2} (1 - 1/p^(s-5) - (-1)^(3*(p-1)/2)*(p-1)/p^(s-2)).
Sum_{k=1..n} a(k) = c * n^7 + O(n^6 * log(n)), where c = (3/28) * Product_{p prime == 1 (mod 4)} (1 - 1/p^2 - 1/p^4 + 1/p^5) * Product_{p prime == 3 (mod 4)} (1 - 1/p^2 + 1/p^4 - 1/p^5) = 0.08756841635... (Calderón et al., 2015). (End)

Extensions

a(16)-a(29) from Giovanni Resta, Mar 05 2014
Showing 1-4 of 4 results.