A227500 a(0)=a(1)=0; for n>1, a(n) = numerator( r(n) ), where r(n) = r(n-1)+r(n-2)+A027641(n-2)/A027642(n-2) and r(0)=r(1)=a(0).
0, 0, 1, 1, 5, 13, 19, 179, 1028, 1103, 893, 2889, 15445, 249787, 24988, 8494711, 6888613, 7423979, 101535859, 329279361, 1187585188, 128951009, 2513033741, 25007430139, 599126628077, 591141383117, -3361274604, 1470023540617, 22712552603063, 322385807064733, -26340115994784101
Offset: 0
Examples
a(2)=1 because r(2)=r(1)+r(0)+A027641(0)/A027642(0)=0+0+1=1; a(3)=1 because r(3)=r(2)+r(1)+A027641(1)/A027642(1)=1+0-1/2=1/2; a(4)=5 because r(4)=r(3)+r(2)+A027641(2)/A027642(2)=1+1/2+1/6=5/3.
Programs
-
Mathematica
b1[0] = b1[1] = 0; b1[n_] := b1[n] = b1[n - 1] + b1[n - 2] + BernoulliB[n - 2]; a[n_] := Numerator[b1[n]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 19 2013 *)
Extensions
More terms from Jean-François Alcover, Jul 19 2013
Comments