A227510 Numbers such that product of digits of n is positive and a substring of n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 31, 41, 51, 61, 71, 81, 91, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 126, 131, 141, 151, 153, 161, 171, 181, 191, 211, 236, 243, 311, 315, 324, 362, 411, 511, 611, 612
Offset: 1
Examples
The product of the digits of 236 is 36, a substring of 236, and hence 236 is a member.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local L; L:= convert(n,base,10); if has(L,0) then return false fi; verify(convert(convert(L,`*`),base,10),L,'sublist'); end proc: select(filter, [$1..1000]); # Robert Israel, Aug 26 2014
-
Mathematica
Select[Range[650], FreeQ[x = IntegerDigits[#], 0] && MemberQ[FromDigits /@ Partition[x, IntegerLength[y = Times @@ x], 1], y] &]
-
PARI
{isok(n)=d=digits(n);p=prod(i=1,#d,d[i]);k=1;while(p&&k<=(#d-#digits(p)+1),v=[];for(j=k,k+#digits(p)-1,v=concat(v,d[j]));if(v==digits(p),return(1));k++);return(0);} n=1;while(n<10^4,if(isok(n),print1(n,", "));n++) \\ Derek Orr, Aug 26 2014
-
PARI
is_A227510(n)={(t=digits(prod(i=1,#n=digits(n),n[i])))&&for(i=0,#n-#t,vecextract(n,2^(i+#t)-2^i)==t&&return(1))} \\ M. F. Hasler, Oct 14 2014
-
Python
from operator import mul from functools import reduce A227510 = [int(n) for n in (str(x) for x in range(1, 10**5)) if not n.count('0') and str(reduce(mul, (int(d) for d in n))) in n] # Chai Wah Wu, Aug 26 2014
Extensions
Edited by M. F. Hasler, Oct 14 2014
Comments