cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227526 G.f.: Sum_{n>=0} x^n * (1+x)^A003188(n), where A003188(n) = n XOR [n/2] is the Gray code for n.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 23, 47, 65, 70, 111, 323, 902, 2064, 3997, 6697, 9638, 11664, 11804, 11436, 18903, 61053, 209236, 623648, 1610326, 3685365, 7673031, 14926689, 27784642, 50202979, 88022528, 147757232, 232939294, 338735927, 448199945, 534600063, 571408283, 546281026, 475461610
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2013

Keywords

Comments

A(-1/2) = Sum_{n>=0} (-1)^n / 2^(n + A003188(n)) = 0.75073331594540770872470210...

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 9*x^5 + 23*x^6 + 47*x^7 + 65*x^8 +...
where
A(x) = 1 + x*(1+x) + x^2*(1+x)^3 + x^3*(1+x)^2 + x^4*(1+x)^6 + x^5*(1+x)^7 + x^6*(1+x)^5 + x^7*(1+x)^4 + x^8*(1+x)^12 + x^9*(1+x)^13 + x^10*(1+x)^15 + x^11*(1+x)^14 + x^12*(1+x)^10 + x^13*(1+x)^11 + x^14*(1+x)^9 + x^15*(1+x)^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^m*(1+x+x*O(x^n))^bitxor(m,m\2)), n)}
    for(n=0, 64, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, binomial(bitxor(k,k\2), n-k))}
    for(n=0, 64, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} binomial(A003188(k), n-k), where A003188(k) = k XOR [k/2].