cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227532 Logarithmic derivative, wrt x, of triangle A227543, as read by terms k=0..n*(n-1)/2 in rows n>=1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 3, 1, 4, 6, 8, 8, 4, 4, 1, 5, 10, 15, 20, 20, 20, 15, 10, 5, 5, 1, 6, 15, 26, 39, 48, 57, 60, 54, 48, 36, 30, 18, 12, 6, 6, 1, 7, 21, 42, 70, 98, 126, 154, 168, 175, 168, 154, 133, 112, 84, 70, 49, 35, 21, 14, 7, 7, 1, 8, 28, 64, 118, 184, 256, 336, 408, 472, 516, 536, 532, 504, 464, 408, 360, 296, 248, 192, 152, 112, 88, 56, 40, 24, 16, 8, 8
Offset: 1

Views

Author

Paul D. Hanna, Jul 14 2013

Keywords

Examples

			L.g.f.: L(x,q) = x*(1) + x^2*(1 + 2*q)/2 + x^3*(1 + 3*q + 3*q^2 + 3*q^3)/3
+ x^4*(1 + 4*q + 6*q^2 + 8*q^3 + 8*q^4 + 4*q^5 + 4*q^6)/4
+ x^5*(1 + 5*q + 10*q^2 + 15*q^3 + 20*q^4 + 20*q^5 + 20*q^6 + 15*q^7 + 10*q^8 + 5*q^9 + 5*q^10)/5
+ x^6*(1 + 6*q + 15*q^2 + 26*q^3 + 39*q^4 + 48*q^5 + 57*q^6 + 60*q^7 + 54*q^8 + 48*q^9 + 36*q^10 + 30*q^11 + 18*q^12 + 12*q^13 + 6*q^14 + 6*q^15)/6 +...
where exponentiation yields the g.f. of triangle A227543:
exp(L(x,q)) = 1 + x*(1) + x^2*(1 + q) + x^3*(1 + 2*q + q^2 + q^3)
+ x^4*(1 + 3*q + 3*q^2 + 3*q^3 + 2*q^4 + q^5 + q^6)
+ x^5*(1 + 4*q + 6*q^2 + 7*q^3 + 7*q^4 + 5*q^5 + 5*q^6 + 3*q^7 + 2*q^8 + q^9 + q^10)
+ x^6*(1 + 5*q + 10*q^2 + 14*q^3 + 17*q^4 + 16*q^5 + 16*q^6 + 14*q^7 + 11*q^8 + 9*q^9 + 7*q^10 + 5*q^11 + 3*q^12 + 2*q^13 + q^14 + q^15) +...
This triangle begins:
1;
1, 2;
1, 3, 3, 3;
1, 4, 6, 8, 8, 4, 4;
1, 5, 10, 15, 20, 20, 20, 15, 10, 5, 5;
1, 6, 15, 26, 39, 48, 57, 60, 54, 48, 36, 30, 18, 12, 6, 6;
1, 7, 21, 42, 70, 98, 126, 154, 168, 175, 168, 154, 133, 112, 84, 70, 49, 35, 21, 14, 7, 7;
1, 8, 28, 64, 118, 184, 256, 336, 408, 472, 516, 536, 532, 504, 464, 408, 360, 296, 248, 192, 152, 112, 88, 56, 40, 24, 16, 8, 8;
1, 9, 36, 93, 189, 324, 489, 684, 891, 1101, 1305, 1476, 1611, 1683, 1701, 1665, 1593, 1476, 1350, 1197, 1053, 900, 765, 630, 522, 405, 324, 243, 189, 135, 99, 63, 45, 27, 18, 9, 9; ...
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(A=1); for(i=1, n, A=1+x*subst(A, x, q*x)*A +x*O(x^n)); n*polcoeff(polcoeff(log(A), n, x), k, q)}
    for(n=1, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
    
  • PARI
    /* By Ramanujan's continued fraction identity: */
    {T(n, k)=local(P=1, Q=1);
    P=sum(m=0, n+1, q^(m^2)*(-x)^m/prod(k=1, m, 1-q^k) +O(x^(n+2)));
    Q=sum(m=0, n+1, q^(m*(m-1))*(-x)^m/prod(k=1, m, 1-q^k) +O(x^(n+2)));
    polcoeff(polcoeff(P'/P - Q'/Q, n-1, x), k, q)}
    for(n=1, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 28 2016

Formula

L.g.f.: Sum_{k=0..n*(n-1)/2, n>=1} T(n,k)*x^n*q^k/n = Log(G(x,q)) where G(x,q) = 1 + x*G(q*x,q)*G(x,q) is the g.f. of triangle A227543.
Row sums form A001700, the logarithmic derivative of the Catalan numbers.
Sum_{k=0..n*(n-1)/2} T(n,k) = binomial(2*n-1, n-1), for n>=1.
Sum_{k=0..n*(n-1)/2} T(n,k)*(-1)^k = (-1)^[n/2] * binomial(n-1, [(n-1)/2]).
Sum_{k=0..n*(n-1)/2} k*T(n,k) = n*2^(2*n-2) - (2*n-1)*binomial(2*n-2,n-1) = A153338(n), for n>=1.
Sum_{k=0..n*(n-1)/2} T(n,k)*exp(2*Pi*I*k/n) = (-1)^(n-1) for n>=1; i.e., the n-th row sum at q = exp(2Pi*I/n), the n-th root of unity, equals -(-1)^n for n>=1.
Sum_{k=0..[n/2]} T(n, n*k) = A145855(n), the number of n-member subsets of 1..2n-1 whose elements sum to a multiple of n.
L.g.f. satisfies: L'(x,q) = P'(x,q)/P(x,q) - Q'(x,q)/Q(x,q), where
P(x,q) = Sum_{n>=0} q^(n^2) * (-x)^n / Product_{k=1..n} (1-q^k),
Q(x,q) = Sum_{n>=0} q^(n*(n-1)) * (-x)^n / Product_{k=1..n} (1-q^k),
due to Ramanujan's continued fraction identity. - Paul D. Hanna, Dec 28 2016