cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A316985 Number of solutions to x^2 + y^2 - z^2 == 1 (mod n).

Original entry on oeis.org

1, 4, 12, 24, 30, 48, 56, 128, 108, 120, 132, 288, 182, 224, 360, 512, 306, 432, 380, 720, 672, 528, 552, 1536, 750, 728, 972, 1344, 870, 1440, 992, 2048, 1584, 1224, 1680, 2592, 1406, 1520, 2184, 3840, 1722, 2688, 1892, 3168, 3240, 2208, 2256, 6144, 2744, 3000
Offset: 1

Views

Author

Andrew Howroyd, Jul 18 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(t)
       if t[1]=2 then 2^(2*t[2]+1)
       else (t[1]+1)*t[1]^(2*t[2]-1)
       fi
    end proc:
    g([2,1]):= 4: g([2,2]):= 24:
    seq(convert(map(g, ifactors(n)[2]),`*`),n=1..100); # Robert Israel, Jul 20 2018
  • Mathematica
    a[n_] := a[n] = If[PrimeQ[n], n(n+1), Times @@ (Which[#[[1]] == 2 && #[[2]] == 1, 4, #[[1]] == 2 && #[[2]] == 2, 24, #[[1]] == 2, 2^(2 #[[2]]+1), True, (#[[1]]+1) #[[1]]^(2 #[[2]]-1)]& /@ FactorInteger[n])]; a[1] = 1; a[2] = 4; Array[a, 50] (* Jean-François Alcover, Jul 25 2018 and slightly modified by Robert G. Wilson v, Jul 25 2018 *)
  • PARI
    M(n, f)={sum(i=0, n-1, Mod(x^(f(i)%n), x^n-1))}
    a(n)={polcoeff(lift(M(n, i->i^2)^2 * M(n, i->-(i^2)) ), 1%n)}
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==2, if(e>2, 2^(2*e+1), if(e==1, 4, 24)), (p+1)*p^(2*e-1)))}

Formula

Multiplicative with a(2^1) = 4, a(2^2) = 24, a(2^e) = 2^(2*e+1) for e > 2, a(p^e) = (p+1)*p^(2*e-1) for odd prime p.
a(n) = n^2*Sum_{d|n} mu(d)^2/d for n odd.
a(n) = A229179(n) for n mod 4 <> 0.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 19/(4*Pi^2) = 0.4812756... . - Amiram Eldar, Oct 18 2022
Showing 1-1 of 1 results.