cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227551 Number T(n,k) of partitions of n into distinct parts with boundary size k; triangle T(n,k), n>=0, 0<=k<=A227568(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 3, 1, 0, 1, 3, 2, 0, 1, 5, 2, 0, 1, 5, 4, 0, 1, 5, 6, 0, 1, 6, 7, 1, 0, 1, 6, 10, 1, 0, 1, 7, 11, 3, 0, 1, 9, 13, 4, 0, 1, 7, 18, 6, 0, 1, 8, 20, 9, 0, 1, 10, 21, 14, 0, 1, 9, 27, 16, 1, 0, 1, 10, 29, 22, 2
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having fewer than two neighbors.

Examples

			T(12,1) = 1: [12].
T(12,2) = 6: [1,11], [2,10], [3,4,5], [3,9], [4,8], [5,7].
T(12,3) = 7: [1,2,3,6], [1,2,9], [1,3,8], [1,4,7], [1,5,6], [2,3,7], [2,4,6].
T(12,4) = 1: [1,2,4,5].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 3;
  0, 1, 3, 1;
  0, 1, 3, 2;
  0, 1, 5, 2;
  0, 1, 5, 4;
  0, 1, 5, 6;
  0, 1, 6, 7, 1;
		

Crossrefs

Row sums give: A000009.
Last elements of rows give: A227552.
Cf. A227345 (a version with trailing zeros), A053993, A201077, A227568, A224878 (one part of size 0 allowed).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),
          expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
          `if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
        end:
    T:= n-> (p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t > 1, x, 1], Expand[If[i < 1, 0, If[t > 1, x, 1]*b[n, i - 1, Quotient[t, 2]] + If[i > n, 0, If[t == 2, x, 1]*b[n - i, i - 1, Quotient[t, 2] + 2]]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 12 2016, after Alois P. Heinz *)

A227552 Number of partitions of n into distinct parts with maximal boundary size.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 2, 2, 4, 6, 1, 1, 3, 4, 6, 9, 14, 1, 2, 3, 5, 8, 11, 17, 24, 1, 1, 3, 5, 8, 11, 18, 24, 35, 49, 1, 2, 3, 6, 9, 14, 21, 30, 42, 60, 81, 1, 1, 3, 5, 9, 13, 21, 29, 43, 60, 84, 113, 156, 1, 2, 3, 6, 10, 15, 24, 35, 50, 71, 99, 134, 184, 246
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having less than two neighbors.

Crossrefs

Last elements of rows of A227551.
Last nonzero elements of rows of A227345.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),
          expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
          `if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
        end:
    a:= n-> (p->coeff(p, x, degree(p)))(b(n$2, 0)):
    seq(a(n), n=0..100);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t>1, x, 1], Expand[If[i<1, 0, If[t>1, x, 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t==2, x, 1] * b[n-i, i-1, Quotient[t, 2]+2]]]]]; a[n_] := Function [p, Coefficient[p, x, Exponent[p, x]]][b[n, n, 0]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

a(n) = A227551(n,A227568(n)).
Showing 1-2 of 2 results.