A227570 Numerators of rationals with e.g.f. D(3,x), a Debye function.
1, -3, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
Offset: 0
Examples
The rationals r(3,n), n=0..15 are: 1, -3/8, 1/10, 0, -1/70, 0, 1/126, 0, -1/110, 0, 5/286, 0, -691/13650, 0, 7/34, 0.
References
- L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band V: Statistische Physik, Akademie Verlag, Leipzig, p. 195, equ. (63.5), and footnote 1 on p. 197.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=3, with a factor (x^3)/3 extracted.
Programs
-
Mathematica
A227570[n_]:=Numerator[3BernoulliB[n]/(n+3)]; Array[A227570,50,0] (* Paolo Xausa, Dec 08 2023 *)
-
Sage
print([(bernoulli(n)*3/(n+3)).numerator() for n in range(30)]) # Andrey Zabolotskiy, Dec 08 2023
Formula
a(n) = numerator(3*B(n)/(n+3)), n >= 0, with the Bernoulli numbers B(n).
Comments