cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A120080 Numerators of expansion of original Debye function D(3,x).

Original entry on oeis.org

1, -3, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Denominators are given in A120081.
See the W. Lang link below for more details on the general case D(n,x), n= 1, 2, ... D(3,x) is the e.g.f. of the rational sequence {3*B(n)/(n+3)}, n >= 0. See A227570/A227571.

Examples

			Rationals r(n): [1, -3/8, 1/20, 0, -1/1680, 0, 1/90720, 0, ...].
		

References

  • L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band V: Statistische Physik, Akademie Verlag, Leipzig, p. 195, equ. (63.5) and footnote 1 on p. 197.

Crossrefs

Programs

  • Magma
    [Numerator(3*Bernoulli(n)/((n+3)*Factorial(n))): n in [0..50]]; // G. C. Greubel, May 01 2023
    
  • Mathematica
    max = 39; Numerator[CoefficientList[Integrate[Normal[Series[(3*(t^3/(Exp[t] - 1)))/x^3, {t, 0, max}]], {t, 0, x}], x]] (* Jean-François Alcover, Oct 04 2011 *)
    Table[Numerator[3*BernoulliB[n]/((n+3)*n!)], {n,0,50}] (* G. C. Greubel, May 01 2023 *)
  • SageMath
    def A120080(n): return numerator(3*bernoulli(n)/((n+3)*factorial(n)))
    [A120080(n) for n in range(51)] # G. C. Greubel, May 01 2023

Formula

D(x) = D(3,x) := (3/x^3)*Integral_{0..x} t^3/(exp(t)-1) dt.
a(n) = numerator(r(n)), with r(n) = [x^n]( 1 - 3*x/8 + Sum_{k >= 1} (3*B(2*k)/((2*k+3)*(2*k)!))*x^(2*k) ) (in lowest terms), |x| < 2*pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(3*B(n)/((n+3)*n!)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). See the comment on the e.g.f. D(3,x) above. - Wolfdieter Lang, Jul 16 2013

A227573 Numerators of rationals with e.g.f. D(4,x), a Debye function.

Original entry on oeis.org

1, -2, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
Offset: 0

Views

Author

Wolfdieter Lang, Jul 17 2013

Keywords

Comments

The denominators are given in A227574.
For general remarks on the e.g.f.s D(n,x), the Debye function with index n = 1, 2, 3, ... see the W. Lang link under A120080.
D(4,x) := (4/x^4)*int(t^4/(exp(x) - 1), t=0..x) is the e.g.f. of the rationals r(4,n) = 4*B(n)/(n+4), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n).
See the Abramowitz-Stegun reference for the integral appearing in
D(4,x) and a series expansion valid for |x| < 2*Pi.
Initially coincides with A176327, A164555 and A027641 for n <> 1. - R. J. Mathar, Jul 19 2013
Differs from these sequences for n = 1328, 2660, 2828, 2880... - Andrey Zabolotskiy, Dec 08 2023

Examples

			The rationals r(4,n), n=0..15 are: 1, -2/5, 1/9, 0, -1/60, 0, 1/105, 0, -1/90, 0, 5/231, 0, -691/10920, 0, 7/27, 0.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=4, with a factor (x^4)/4 extracted.

Crossrefs

Cf. A227570, A227574, A027641/A027642, A120086/A120087 (D(4,x) as o.g.f.).

Programs

Formula

a(n) = numerator(4*B(n)/(n+4)), n >= 0, with the Bernoulli numbers B(n).

A227571 Denominators of rationals with e.g.f. D(3,x), a Debye function.

Original entry on oeis.org

1, 8, 10, 1, 70, 1, 126, 1, 110, 1, 286, 1, 13650, 1, 34, 1, 3230, 1, 5586, 1, 2530, 1, 1150, 1, 24570, 1, 58, 1, 8990, 1, 157542, 1, 5950, 1, 74, 1, 24949470, 1, 82, 1, 193930, 1, 27090, 1, 10810, 1, 4606, 1, 788970, 1, 1166, 1, 29150, 1, 15162, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2013

Keywords

Comments

See the comments, references and links under A227570.

Examples

			The rationals r(3,n), n=0..15 are: 1, -3/8, 1/10, 0, -1/70, 0, 1/126, 0, -1/110, 0, 5/286, 0, -691/13650, 0, 7/34, 0.
		

Crossrefs

Programs

Formula

a(n) = denominator(3*B(n)/(n+3)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n).
The e.g.f. of the rationals r(3,n) := 3*B(n)/(n+3) is D(3,x) = (3/x^3)*int(t^3/(exp(x) - 1), t=0..x).
Showing 1-3 of 3 results.