A120081
Denominators of expansion for original Debye function (n=3).
Original entry on oeis.org
1, 8, 20, 1, 1680, 1, 90720, 1, 4435200, 1, 207567360, 1, 6538371840000, 1, 423437414400, 1, 67580611338240000, 1, 35763659520196608000, 1, 6155242080686899200000, 1, 117509166994931712000000, 1, 15244417230585693025075200000, 1, 1799300365026394374144000000
Offset: 0
-
[Denominator(3*Bernoulli(n)/((n+3)*Factorial(n))): n in [0..50]]; // G. C. Greubel, May 01 2023
-
max = 26; Denominator[CoefficientList[Integrate[Normal[Series[(3*(t^3/(Exp[t] -1)))/x^3, {t, 0, max}]], {t, 0, x}], x]] (* Jean-François Alcover, Oct 04 2011 *)
Table[Denominator[3*BernoulliB[n]/((n+3)*n!)], {n,0,50}] (* G. C. Greubel, May 01 2023 *)
-
def A120081(n): return denominator(3*bernoulli(n)/((n+3)*factorial(n)))
[A120081(n) for n in range(51)] # G. C. Greubel, May 01 2023
A120086
Numerators of expansion of Debye function for n=4: D(4,x).
Original entry on oeis.org
1, -2, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373
Offset: 0
Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with a factor (x^4)/4 extracted.
- Wolfdieter Lang, Rationals r(n).
-
[Numerator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
-
r[n_]:= 4*BernoulliB[n]/((n+4)*n!); Table[r[n]//Numerator, {n,0,36}] (* Jean-François Alcover, Jun 21 2013 *)
-
[numerator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023
A120087
Denominators of expansion of Debye function for n=4: D(4,x).
Original entry on oeis.org
1, 5, 18, 1, 1440, 1, 75600, 1, 3628800, 1, 167650560, 1, 5230697472000, 1, 336259123200, 1, 53353114214400000, 1, 28100018194440192000, 1, 4817145976189747200000, 1, 91657150256046735360000, 1, 11856768957122205686169600000, 1, 1396008903899788738560000000, 1
Offset: 0
Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
Cf.
A000367,
A002445,
A027641,
A027642,
A120080,
A120081,
A120082,
A120083,
A120084,
A120085,
A120086,
A227573,
A227574.
-
[Denominator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
-
Table[Denominator[4*BernoulliB[n]/((n+4)*n!)], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
-
[denominator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023
A120084
Numerators of expansion for Debye function for n=2: D(2,x).
Original entry on oeis.org
1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0
Rationals r(n): [1, -1/3, 1/24, 0, -1/2160, 0, 1/120960, 0, -1/6048000, 0, 1/287400960, ...].
- G. C. Greubel, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with a factor (x^2)/2 extracted.
- Wolfdieter Lang, Rationals r(n).
-
[Numerator(2*(n+1)*Bernoulli(n)/Factorial(n+2)): n in [0..50]]; // G. C. Greubel, May 02 2023
-
max = 38; Numerator[CoefficientList[Integrate[Normal[Series[(2*(t^2/(Exp[t]-1)))/x^2, {t, 0, max}]], {t, 0, x}], x]] (* Jean-François Alcover, Oct 04 2011 *)
Table[Numerator[2*(n+1)*BernoulliB[n]/(n+2)!], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
-
[numerator(2*(n+1)*bernoulli(n)/factorial(n+2)) for n in range(51)] # G. C. Greubel, May 02 2023
A227573
Numerators of rationals with e.g.f. D(4,x), a Debye function.
Original entry on oeis.org
1, -2, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
Offset: 0
The rationals r(4,n), n=0..15 are: 1, -2/5, 1/9, 0, -1/60, 0, 1/105, 0, -1/90, 0, 5/231, 0, -691/10920, 0, 7/27, 0.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=4, with a factor (x^4)/4 extracted.
A120085
Denominators of expansion for Debye function for n=2: D(2,x).
Original entry on oeis.org
1, 3, 24, 1, 2160, 1, 120960, 1, 6048000, 1, 287400960, 1, 9153720576000, 1, 597793996800, 1, 96035605585920000, 1, 51090942171709440000, 1, 8831434289681203200000, 1, 169213200472701665280000, 1, 22019713777512667702886400000, 1, 2605883287279605645312000000
Offset: 0
Rationals r(n): [1, -1/3, 1/24, 0, -1/2160, 0, 1/120960, 0, -1/6048000, 0, 1/287400960,...].
- G. C. Greubel, Table of n, a(n) for n = 0..445
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=2, multiplied by 2/x^2.
-
[Denominator(2*(n+1)*Bernoulli(n)/Factorial(n+2)): n in [0..50]]; // G. C. Greubel, May 02 2023
-
max = 25; Denominator[CoefficientList[Integrate[Normal[Series[(2*(t^2/(Exp[t]-1)))/x^2, {t, 0, max}]], {t, 0, x}], x]](* Jean-François Alcover, Oct 04 2011 *)
Table[Denominator[2*(n+1)*BernoulliB[n]/(n+2)!], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
-
[denominator(2*(n+1)*bernoulli(n)/factorial(n+2)) for n in range(51)] # G. C. Greubel, May 02 2023
A227570
Numerators of rationals with e.g.f. D(3,x), a Debye function.
Original entry on oeis.org
1, -3, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
Offset: 0
The rationals r(3,n), n=0..15 are: 1, -3/8, 1/10, 0, -1/70, 0, 1/126, 0, -1/110, 0, 5/286, 0, -691/13650, 0, 7/34, 0.
- L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band V: Statistische Physik, Akademie Verlag, Leipzig, p. 195, equ. (63.5), and footnote 1 on p. 197.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=3, with a factor (x^3)/3 extracted.
A358625
a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.
Original entry on oeis.org
1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0
Rationals: 1, 1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, ...
Note that a(68) = -4633713579924631067171126424027918014373353 but A120082(68) = -125235502160125163977598011460214000388469.
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]
- Peter Luschny, Table of n, a(n) for n = 0..300
- Arnold Adelberg, Shaofang Hong and Wenli Ren, Bounds of Divided Universal Bernoulli Numbers and Universal Kummer Congruences, Proceedings of the American Mathematical Society, Vol. 136(1), 2008, p. 61-71.
- Bernd C. Kellner, The structure of Bernoulli numbers, arXiv:math/0411498 [math.NT], 2004.
-
Concatenation([1, 1], List([2..45], n-> NumeratorRat(Bernoulli(n)/(n)))); # G. C. Greubel, Sep 19 2019
-
[1, 1] cat [Numerator(Bernoulli(n)/(n)): n in [2..45]]; // G. C. Greubel, Sep 19 2019
-
A358625 := n -> ifelse(n = 0, 1, numer(bernoulli(n, 1) / n)):
seq(A358625(n), n = 0.. 40);
# Alternative:
egf := 1 + x + log(1 - exp(-x)) - log(x): ser := series(egf, x, 42):
seq(numer(n! * coeff(ser, x, n)), n = 0..40);
-
Join[{1, 1}, Table[Numerator[BernoulliB[n] / n], {n, 2, 45}]]
-
a(n) = if (n<=1, 1, numerator(bernfrac(n)/n)); \\ Michel Marcus, Feb 24 2015
Showing 1-8 of 8 results.
Comments