A120080
Numerators of expansion of original Debye function D(3,x).
Original entry on oeis.org
1, -3, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0
Rationals r(n): [1, -3/8, 1/20, 0, -1/1680, 0, 1/90720, 0, ...].
- L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band V: Statistische Physik, Akademie Verlag, Leipzig, p. 195, equ. (63.5) and footnote 1 on p. 197.
- G. C. Greubel, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=3, with a factor (x^3)/3 extracted.
- Wolfdieter Lang, Rationals r(n), and general remarks on the e.g.f. D(n,x).
-
[Numerator(3*Bernoulli(n)/((n+3)*Factorial(n))): n in [0..50]]; // G. C. Greubel, May 01 2023
-
max = 39; Numerator[CoefficientList[Integrate[Normal[Series[(3*(t^3/(Exp[t] - 1)))/x^3, {t, 0, max}]], {t, 0, x}], x]] (* Jean-François Alcover, Oct 04 2011 *)
Table[Numerator[3*BernoulliB[n]/((n+3)*n!)], {n,0,50}] (* G. C. Greubel, May 01 2023 *)
-
def A120080(n): return numerator(3*bernoulli(n)/((n+3)*factorial(n)))
[A120080(n) for n in range(51)] # G. C. Greubel, May 01 2023
A120086
Numerators of expansion of Debye function for n=4: D(4,x).
Original entry on oeis.org
1, -2, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373
Offset: 0
Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with a factor (x^4)/4 extracted.
- Wolfdieter Lang, Rationals r(n).
-
[Numerator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
-
r[n_]:= 4*BernoulliB[n]/((n+4)*n!); Table[r[n]//Numerator, {n,0,36}] (* Jean-François Alcover, Jun 21 2013 *)
-
[numerator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023
A120087
Denominators of expansion of Debye function for n=4: D(4,x).
Original entry on oeis.org
1, 5, 18, 1, 1440, 1, 75600, 1, 3628800, 1, 167650560, 1, 5230697472000, 1, 336259123200, 1, 53353114214400000, 1, 28100018194440192000, 1, 4817145976189747200000, 1, 91657150256046735360000, 1, 11856768957122205686169600000, 1, 1396008903899788738560000000, 1
Offset: 0
Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
Cf.
A000367,
A002445,
A027641,
A027642,
A120080,
A120081,
A120082,
A120083,
A120084,
A120085,
A120086,
A227573,
A227574.
-
[Denominator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
-
Table[Denominator[4*BernoulliB[n]/((n+4)*n!)], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
-
[denominator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023
A120084
Numerators of expansion for Debye function for n=2: D(2,x).
Original entry on oeis.org
1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0
Rationals r(n): [1, -1/3, 1/24, 0, -1/2160, 0, 1/120960, 0, -1/6048000, 0, 1/287400960, ...].
- G. C. Greubel, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with a factor (x^2)/2 extracted.
- Wolfdieter Lang, Rationals r(n).
-
[Numerator(2*(n+1)*Bernoulli(n)/Factorial(n+2)): n in [0..50]]; // G. C. Greubel, May 02 2023
-
max = 38; Numerator[CoefficientList[Integrate[Normal[Series[(2*(t^2/(Exp[t]-1)))/x^2, {t, 0, max}]], {t, 0, x}], x]] (* Jean-François Alcover, Oct 04 2011 *)
Table[Numerator[2*(n+1)*BernoulliB[n]/(n+2)!], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
-
[numerator(2*(n+1)*bernoulli(n)/factorial(n+2)) for n in range(51)] # G. C. Greubel, May 02 2023
A120085
Denominators of expansion for Debye function for n=2: D(2,x).
Original entry on oeis.org
1, 3, 24, 1, 2160, 1, 120960, 1, 6048000, 1, 287400960, 1, 9153720576000, 1, 597793996800, 1, 96035605585920000, 1, 51090942171709440000, 1, 8831434289681203200000, 1, 169213200472701665280000, 1, 22019713777512667702886400000, 1, 2605883287279605645312000000
Offset: 0
Rationals r(n): [1, -1/3, 1/24, 0, -1/2160, 0, 1/120960, 0, -1/6048000, 0, 1/287400960,...].
- G. C. Greubel, Table of n, a(n) for n = 0..445
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=2, multiplied by 2/x^2.
-
[Denominator(2*(n+1)*Bernoulli(n)/Factorial(n+2)): n in [0..50]]; // G. C. Greubel, May 02 2023
-
max = 25; Denominator[CoefficientList[Integrate[Normal[Series[(2*(t^2/(Exp[t]-1)))/x^2, {t, 0, max}]], {t, 0, x}], x]](* Jean-François Alcover, Oct 04 2011 *)
Table[Denominator[2*(n+1)*BernoulliB[n]/(n+2)!], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
-
[denominator(2*(n+1)*bernoulli(n)/factorial(n+2)) for n in range(51)] # G. C. Greubel, May 02 2023
A227570
Numerators of rationals with e.g.f. D(3,x), a Debye function.
Original entry on oeis.org
1, -3, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
Offset: 0
The rationals r(3,n), n=0..15 are: 1, -3/8, 1/10, 0, -1/70, 0, 1/126, 0, -1/110, 0, 5/286, 0, -691/13650, 0, 7/34, 0.
- L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band V: Statistische Physik, Akademie Verlag, Leipzig, p. 195, equ. (63.5), and footnote 1 on p. 197.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=3, with a factor (x^3)/3 extracted.
Showing 1-6 of 6 results.
Comments