A120087 Denominators of expansion of Debye function for n=4: D(4,x).
1, 5, 18, 1, 1440, 1, 75600, 1, 3628800, 1, 167650560, 1, 5230697472000, 1, 336259123200, 1, 53353114214400000, 1, 28100018194440192000, 1, 4817145976189747200000, 1, 91657150256046735360000, 1, 11856768957122205686169600000, 1, 1396008903899788738560000000, 1
Offset: 0
Examples
Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..440
Crossrefs
Programs
-
Magma
[Denominator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
-
Mathematica
Table[Denominator[4*BernoulliB[n]/((n+4)*n!)], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
-
SageMath
[denominator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023
Formula
a(n) = denominator(r(n)), with r(n) = [x^n](1 - 2*x/5 + 2*Sum_{k >= 0}(B(2*k)/((k+2)*(2*k)!))*x^(2*k) ), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = denominator(4*B(n)/((n+4)*n!)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). From D(4,x) read as o.g.f. - Wolfdieter Lang, Jul 17 2013
Comments