A120086 Numerators of expansion of Debye function for n=4: D(4,x).
1, -2, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373
Offset: 0
Examples
Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with a factor (x^4)/4 extracted.
- Wolfdieter Lang, Rationals r(n).
Crossrefs
Programs
-
Magma
[Numerator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
-
Mathematica
r[n_]:= 4*BernoulliB[n]/((n+4)*n!); Table[r[n]//Numerator, {n,0,36}] (* Jean-François Alcover, Jun 21 2013 *)
-
SageMath
[numerator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023
Formula
a(n) = numerator(r(n)), with r(n) = [x^n](1 - 4*x/(2*(4+1)) + 2*Sum_{k >= 0} (B(2*k)/((k+2)*(2*k)!))*x^(2*k) ), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(4*B(n)/((n+4)*n!)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). From D(4,x) read as o.g.f. - Wolfdieter Lang, Jul 17 2013
Comments