A120082 Numerators of expansion for Debye function for n=1: D(1,x).
1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0
Examples
Rationals r(n): [1, -1/4, 1/36, 0, -1/3600, 0, 1/211680, 0, -1/10886400, ...].
References
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 23.
Links
- Peter Luschny, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with a factor x extracted.
- Wolfdieter Lang, Rationals r(n).
Programs
-
Magma
[Numerator(Bernoulli(n)/Factorial(n+1)): n in [0..50]]; // G. C. Greubel, May 01 2023
-
Maple
A120082 := proc(n) local b; if n = 0 then b := 1 ; elif n = 1 then b := -1/4 ; elif type(n, 'odd') then b := 0; else b := bernoulli(n)/(n+1)! ; fi; numer(b) ; end: # R. J. Mathar, Sep 03 2009 gf := (1 - x/4 + sum((bernoulli(2*k)/((2*k+1)*(2*k)!))*x^(2*k), k=0..infinity)): a := proc(n) local ser; if n = 0 then return 1 fi; ser := series(gf, x, n+2): numer(coeff(ser, x, n)) end: seq(a(n), n = 0..40); # Peter Luschny, Dec 02 2022
-
Mathematica
Table[Numerator[BernoulliB[n]/((n+1)!)], {n,0,50}] (* G. C. Greubel, May 01 2023 *)
-
SageMath
def A120082(n): return numerator(bernoulli(n)/factorial(n+1)) [A120082(n) for n in range(51)] # G. C. Greubel, May 01 2023
Formula
a(n) = numerator(r(n)), with r(n) = [x^n] (1 - x/4 + Sum_{k>=0} (B(2*k)/((2*k+1)*(2*k)!))*x^(2*k)), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(B(n)/(n+1)!), n >= 0. See the above comment on the e.g.f. D(1,x). - Wolfdieter Lang, Jul 15 2013
Apart from the sign of a(1) this sequence differs from A358625 for the first time at n = 68. - Peter Luschny, Dec 02 2022
Extensions
Edited after Andrey Zabolotskiy noticed an inconsistency by Peter Luschny, Dec 02 2022
Comments