cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227578 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component such that for each point (p_1,p_2,...,p_k) we have p_1<=p_2<=...<=p_k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 14, 29, 8, 1, 1, 1, 42, 290, 185, 16, 1, 1, 1, 132, 3532, 7680, 1257, 32, 1, 1, 1, 429, 49100, 456033, 238636, 8925, 64, 1, 1, 1, 1430, 750325, 34426812, 77767945, 8285506, 65445, 128, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

Conjecture: column k is asymptotic to c(k) * (k+1)^(k*n)/n^((k^2-1)/2), where c(k) is a constant dependent only on k. - Vaclav Kotesovec, Jul 21 2013

Examples

			A(4,0) = 1: [()].
A(3,1) = 4: [(3),(0)], [(3),(1),(0)], [(3),(2),(0)], [(3),(2),(1),(0)].
A(2,2) = 5: [(2,2),(0,2),(0,0)], [(2,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,0)], [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)].
A(1,3) = 1: [(1,1,1),(0,1,1),(0,0,1),(0,0,0)].
A(0,4) = 1: [(0,0,0,0)].
Square array A(n,k) begins:
  1,  1,    1,      1,        1,           1, ...
  1,  1,    1,      1,        1,           1, ...
  1,  2,    5,     14,       42,         132, ...
  1,  4,   29,    290,     3532,       49100, ...
  1,  8,  185,   7680,   456033,    34426812, ...
  1, 16, 1257, 238636, 77767945, 36470203156, ...
		

Crossrefs

Rows n=0+1, 2-10 give: A000012, A000108(k+1), A181197(k+2), A227584, A227602, A227603, A227604, A227605, A227606, A227607.
Main diagonal gives: A227579.
Cf. A060854 (steps decrement one component by 1), A262809, A263159.
A181196 is a similar but different array.

Programs

  • Maple
    b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(
          i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))
        end:
    A:= (n, k)-> `if`(k=0, 1, b([n$k])):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_] := b[l] = If[ l[[-1]] == 0, 1, Sum[ Sum[ b[ReplacePart[l, i -> j]], {j, If[i == 1, 0, l[[i-1]]], l[[i]]-1}], {i, 1, Length[l]}]]; a[n_, k_] := If[k == 0, 1, b[Array[n&, k]]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)