A227600 Number of lattice paths from {n}^9 to {0}^9 using steps that decrement one component such that for each point (p_1,p_2,...,p_9) we have p_1<=p_2<=...<=p_9.
1, 1, 16796, 3868253164, 4353511908566248, 14071120934043157192832, 97106818062816381529413045436, 1190606938488172095512348078940830464, 22939433009552344381207995985855864376139032, 637028433009539403532335279417025047587902906655768
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..30
Crossrefs
Column k=9 of A227578.
Programs
-
Maple
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop( i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l))) end: a:= n-> `if`(n=0, 1, b([n$9])): seq(a(n), n=0..10);