A227605 Number of lattice paths from {8}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n.
1, 128, 491825, 12509563082, 1026843977181745, 187978502469162658572, 61845760669881132413037769, 31862864761563509123808857974124, 23408169635197679203800470649923362577, 22939433009552344381207995985855864376139032
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..30
Crossrefs
Row n=8 of A227578.
Programs
-
Maple
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop( i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l))) end: a:= n-> `if`(n=0, 1, b([8$n])): seq(a(n), n=0..10);