A227606 Number of lattice paths from {9}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n.
1, 256, 3768209, 526701471002, 298985252352030713, 445073778727031182727610, 1344481798162876850603732892817, 6993293261428532974934599912795818724, 55994660641252674524946692511672567020920313, 637028433009539403532335279417025047587902906655768
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..25
Crossrefs
Row n=9 of A227578.
Programs
-
Maple
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop( i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l))) end: a:= n-> `if`(n=0, 1, b([9$n])): seq(a(n), n=0..10);